首页> 外文期刊>Journal of the American Chemical Society >Comparison between the Geometric and Electronic Structures and Reactivities of {FeNO}~7 and {fEo_2}~8 Complexes: A Density Functional Theory Study
【24h】

Comparison between the Geometric and Electronic Structures and Reactivities of {FeNO}~7 and {fEo_2}~8 Complexes: A Density Functional Theory Study

机译:{FeNO}〜7和{fEo_2}〜8配合物的几何和电子结构与反应性的比较:密度泛函理论研究

获取原文
获取原文并翻译 | 示例
       

摘要

In a previous study, we analyzed the electronic structure of S = 3/2 {FeNO}~7 model complexes [Brown et al. J. Am. Chem. Soc. 1995, 117, 715-732]. The combined spectroscopic data and SCF-Xα-SW electronic structure calculations are best described in terms of Fe~(III) (S = 5/2) antiferromagnetically coupled to NO~- (S = 1). Many nitrosyl derivatives of non-heme iron enzymes have spectroscopic properties similar to those of these model complexes. These NO derivatives can serve as stable analogues of highly labile oxygen intermediates. It is thus essential to establish a reliable density functional theory (DFT) methodology for the geometry and energetics of {FeNO}~7 complexes, based on detailed experimental data. This methodology can then be extended to the study of {FeO_2}~8 complexes, followed by investigations into the reaction mechanisms of non-heme iron enzymes. Here, we have used the model complex Fe(Me_3TACN)(NO)(N_3)_2 as an experimental marker and determined that a pure density functional BP86 with 10% hybrid character and a mixed triple-ζ/double-ζ basis set lead to agreement between experimental and computational data. This methodology is then applied to optimize the hypothetical Fe(Me_3TACN)(O_2)(N_3)_2 complex, where the NO moiety is replaced by O_2. The main geometric differences are an elongated Fe-O_2 bond and a steeper Fe-O-O angle in the {FeO_2}~8 complex. The electronic structure of {FeO_2}~8 corresponds to Fe~(III) (S = 5/2) antiferromagnetically coupled to O_2~- (S = 1/2), and, consistent with the extended bond length, the {FeO_2}~8 unit has only one Fe~(III)-O_2~- bonding interaction, while the {FeNO}~7 unit has both σ and type Fe~(III)-NO~- bonds. This is in agreement with experiment as NO forms a more stable Fe~(III)-NO~- adduct relative to O_2~-. Although NO is, in fact, harder to reduce, the resultant NO~- species forms a more stable bond to Fe~(III) relative to O_2~- due to the different bonding interactions.
机译:在先前的研究中,我们分析了S = 3/2 {FeNO}〜7模型配合物的电子结构[Brown等。 J.上午化学Soc。 1995,117,715-732]。结合光谱数据和SCF-Xα-SW电子结构计算可以用反铁磁耦合至NO〜-(S = 1)的Fe〜(III)(S = 5/2)来最好地描述。非血红素铁酶的许多亚硝酰基衍生物具有类似于这些模型配合物的光谱性质。这些NO衍生物可以用作不稳定的氧中间体的稳定类似物。因此,基于详细的实验数据,为{FeNO}〜7配合物的几何构型和高能学建立可靠的密度泛函理论(DFT)方法至关重要。该方法可以扩展到{FeO_2}〜8配合物的研究,然后研究非血红素铁酶的反应机理。在这里,我们已使用模型复合物Fe(Me_3TACN)(NO)(N_3)_2作为实验标记,并确定具有10%杂化特性和三-ζ/双-ζ混合基集的纯密度官能BP86导致实验数据和计算数据之间的一致性。然后将这种方法应用于优化假设的Fe(Me_3TACN)(O_2)(N_3)_2配合物,其中NO部分被O_2取代。主要的几何差异是{FeO_2}〜8络合物中的拉长的Fe-O_2键和较陡的Fe-O-O角。 {FeO_2}〜8的电子结构对应于反铁磁耦合到O_2〜-(S = 1/2)的Fe〜(III)(S = 5/2),并且与扩展键长一致,{FeO_2} 〜8单元仅具有一个Fe〜(III)-O_2〜-键,而{FeNO}〜7单元同时具有σ键和Fe〜(III)-NO〜-键。这与实验一致,因为NO相对于O_2〜-形成了更稳定的Fe〜(III)-NO〜-加合物。尽管实际上NO很难还原,但由于键间的相互作用不同,所得的NO〜-相对于O_2〜-与Fe〜(III)形成了更稳定的键。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2004年第2期|p. 505-515|共11页
  • 作者单位

    Department of Chemistry, Stanford University, Stanford, California 94305-5080;

    Department of Chemistry, Stanford University, Stanford, California 94305-5080;

    Department of Chemistry, Stanford University, Stanford, California 94305-5080;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

  • 入库时间 2022-08-18 03:24:38

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号