首页> 外文期刊>Journal of the American Chemical Society >An Approach to Developing a Force Field for Molecular Simulation of Martensitic Phase Transitions between Phases with Subtle Differences in Energy and Structure
【24h】

An Approach to Developing a Force Field for Molecular Simulation of Martensitic Phase Transitions between Phases with Subtle Differences in Energy and Structure

机译:具有能量和结构细微差别的相之间马氏体相变分子模拟的力场发展方法

获取原文
获取原文并翻译 | 示例
       

摘要

D,L-Norleucine is one of only a few molecules whose crystals exhibit a martensitic or displacive-type phase transformation where the emerging phase shows a topotaxial relationship with the parent phase. The molecular mechanism for such phase transformations, particularly in molecular crystals, is not well understood. Crystalline phases that exhibit displacive phase transitions tend to be very similar in structure and energy. Consequently, the development of a force field for such phases is challenging as the phase behavior is determined by subtle differences in their lattice energies and entropies. We report an approach for developing a force field for such phases with an application to D,L-norleucine. The proposed procedure includes calculation of the phase diagram of the crystalline phases as a function of temperature to identify the best force field. D,L-Norleucine also presents an additional problem since in the solid state it exists as a zwitterion that is unstable in vacuo and therefore cannot be characterized using high-level ab initio calculations in the gas phase. However, a stable zwitterion could be obtained using Onsager's reaction-field continuum model for a solvent (SCRF) using both Hartree-Fock and density functional theory. A number of force fields and the various sets of partial charges obtained from the SCRF calculations were screened for their ability to reproduce the crystal structures of the two known phases, α and β, of D,L-norleucine. Selected parameter sets were then employed in free energy minimizations to identify the best set on the basis of a correct prediction of the α-β phase transition. The Williams' nonbonded parameters combined with partial charges from SCRF-Polarized Continuum Model calculation were found to reproduce the structures of the phases accurately and also maintained their stability in extended molecular dynamics simulations in the Parrinello-Rahman constant stress ensemble. Moreover, we were also able to successfully simulate the phase transformation of the β- to the α-phase. The identified force field should enable detailed studies of the phase transformations exhibited by crystals of D,L-norleucine and hence enhance our understanding of martensitic-type transformations in molecular crystals.
机译:D,L-正亮氨酸是少数几个晶体显示出马氏体或置换型相变的分子之一,其中新兴相显示出与母体相呈全轴关系。对于这种相变的分子机理,特别是在分子晶体中,尚不十分了解。表现出相变的结晶相在结构和能量上趋于非常相似。因此,这种相的力场的发展具有挑战性,因为相行为是由其晶格能量和熵的细微差别决定的。我们报告了一种为D,L-正亮氨酸应用开发此类相的力场的方法。拟议的程序包括根据温度计算结晶相的相图,以确定最佳力场。 D,L-正亮氨酸还存在另一个问题,因为在固态下它以两性离子形式存在,该两性离子在真空中不稳定,因此不能使用气相中的高从头算来表征。但是,使用Hartree-Fock和密度泛函理论,使用Onsager的溶剂反应场连续体模型(SCRF)可以获得稳定的两性离子。从SCRF计算中获得的许多力场和不同组的部分电荷被筛选出来,具有再现D,L-正亮氨酸两个已知相α和β的晶体结构的能力。然后将选定的参数集用于自由能最小化,以基于对α-β相变的正确预测来确定最佳参数集。发现威廉姆斯的非键合参数与来自SCRF-极化连续谱模型计算的部分电荷相结合,可以精确地重现相的结构,并在Parrinello-Rahman恒应力集成中的扩展分子动力学模拟中保持其稳定性。此外,我们还能够成功模拟β相到α相的相变。所确定的力场应能够详细研究D,L-正亮氨酸晶体的相变,从而增强我们对分子晶体中马氏体型相变的理解。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2004年第1期|p. 396-405|共10页
  • 作者单位

    Computational Pharmaceutical Sciences Laboratory, Department of Pharmacy, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NN, U.K.;

    Computational Pharmaceutical Sciences Laboratory, Department of Pharmacy, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NN, U.K.;

    Nanochemistry Research Institute, Department of Applied Chemistry, Curtin University of Technology, P.O. Box U1987, Perth 6845, Western Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

  • 入库时间 2022-08-18 03:24:36

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号