首页> 外文期刊>Journal of the American Chemical Society >A Solid State ~(13)C NMR, Crystallographic, and Quantum Chemical Investigation of Chemical Shifts and Hydrogen Bonding in Histidine Dipeptides
【24h】

A Solid State ~(13)C NMR, Crystallographic, and Quantum Chemical Investigation of Chemical Shifts and Hydrogen Bonding in Histidine Dipeptides

机译:组氨酸二肽中的化学位移和氢键的固态〜(13)C NMR,晶体学和量子化学研究

获取原文
获取原文并翻译 | 示例
       

摘要

We report the first solid-state NMR, crystallographic, and quantum chemical investigation of the origins of the ~(13)C NMR chemical shifts of the imidazole group in histidine-containing dipeptides. The chemical shift ranges for C~γ and C~(δ_2) seen in eight crystalline dipeptides were very large (12.7-13.8 ppm); the shifts were highly correlated (R~2 = 0.90) and were dominated by ring tautomer effects and intermolecular interactions. A similar correlation was found in proteins, but only for buried residues. The imidazole ~(13)C NMR chemical shifts were predicted with an overall rms error of 1.6-1.9 ppm over a 26 ppm range, by using quantum chemical methods. Incorporation of hydrogen bond partner molecules was found to be essential in order to reproduce the chemical shifts seen experimentally. Using AIM (atoms in molecules) theory we found that essentially all interactions were of a closed shell nature and the hydrogen bond critical point properties were highly correlated with the N…H…O (average R~2 = 0.93) and N~(ε_2)…H…N (average R~2 = 0.98) hydrogen bond lengths. For C~(ε_1) the ~(13)C chemical shifts were also highly correlated with each of these properties (at the N~(ε_2) site), indicating the dominance of intermolecular interactions for C~(ε_1). These results open up the way to analyzing ~(13)C NMR chemical shifts, tautomer states (from C~(δ_2) C~(ε_1) shifts), and hydrogen bond properties (from C~(ε_1) shifts) of histidine residue in proteins and should be applicable to imidazole-containing drug molecules bound to proteins, as well.
机译:我们报道了含组氨酸的二肽中咪唑基的〜(13)C NMR化学位移的起源的第一个固态NMR,晶体学和量子化学研究。八个晶体二肽中C〜γ和C〜(δ_2)的化学位移范围非常大(12.7-13.8 ppm);这些变化是高度相关的(R〜2 = 0.90),并且主要受环互变异构体效应和分子间相互作用的影响。在蛋白质中发现了类似的相关性,但仅适用于埋藏的残基。通过使用量子化学方法,预测了咪唑〜(13)C NMR化学位移在26 ppm范围内的均方根误差为1.6-1.9 ppm。发现氢键伙伴分子的掺入对于重现实验中观察到的化学位移是必不可少的。使用AIM(分子中的原子)理论,我们发现基本上所有相互作用都是封闭壳性质,氢键临界点性质与N…H…O(平均R〜2 = 0.93)和N〜(ε_2)高度相关。 )…H…N(平均R〜2 = 0.98)氢键长度。对于C〜(ε_1),〜(13)C化学位移也与这些性质中的每一个都高度相关(在N〜(ε_2)位点),表明C〜(ε_1)的分子间相互作用占主导地位。这些结果为分析组氨酸残基的〜(13)C NMR化学位移,互变异构体状态(来自C〜(δ_2)C〜(ε_1)位移和氢键性质(来自C〜(ε_1)位移)开辟了道路。蛋白质中的蛋白质,也应适用于与蛋白质结合的含咪唑的药物分子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号