首页> 外文期刊>Journal of the American Chemical Society >Theory favors a stepwise mechanism of porphyrin degradation by a ferric hydroperoxide model of the active species of heme oxygenase
【24h】

Theory favors a stepwise mechanism of porphyrin degradation by a ferric hydroperoxide model of the active species of heme oxygenase

机译:理论支持通过血红素加氧酶活性物质的氢过氧化铁模型逐步降解卟啉

获取原文
获取原文并翻译 | 示例
       

摘要

The report uses density functional theory to address the mechanism of heme degradation by the enzyme heme oxygenase (HO) using a model ferric hydroperoxide complex. HO is known to trap heme molecules and degrade them to maintain iron homeostasis in the biosystem (Ortiz de Montellano, P. R. Acc. Chem. Res. 1998, 31, 543). The degradation is initiated by complexation of the heme, then formation of the iron-hydroperoxo species, which subsequently oxidizes the meso position of the porphyrin by hydroxylation, thereby enabling eventually the cleavage of the porphyrin ring. Kinetic isotope effect studies (Davydov, R.; Matsui, T.; Fujii, H.; Ikeda-Saito, M.; Hoffman, B. M. J. Am. Chem. Soc. 2003, 125, 16208) indicate that the mechanism is assisted by general acid catalysis, via a chain of water molecules, and that all the events occur in concert. However, previous theoretical treatments indicated that the concerted mechanism has a high barrier, much higher than an alternative mechanism that is initiated by O-O bond homolysis of iron-hydroperoxide (Sharma, P. K.; Kevorkiants, R.; de Visser, S. P.; Kumar, D.; Shaik, S. Angew. Chem. Int. Ed. 2004, 43,1129). The present contribution studies the stepwise and concerted acid-catalyzed mechanisms using H3O+(H2O)(n), n = 0-2. The effect of the acid strength is tested using the H4N+(H2O)(2) cluster and a fully protonated ferric hydroperoxide. All the calculations show that a stepwise mechanism that involves proton relay and O-O homolysis, in the rate-determining step, has a much lower barrier (> 10 kcal/mol) than the corresponding fully concerted mechanism. The best fit of the calculated solvent kinetic isotope effect, to the experimental data, is obtained for the H3O+(H2O)(2) cluster. The calculated cc-deuterium secondary kinetic isotope effect is inverse (0.95-0.98), but much less so than the experimental value (0.7). Possible reasons for this quantitative difference are discussed. Some probes are suggested that may enable experiment to distinguish the stepwise from the concerted mechanism.
机译:该报告使用密度泛函理论解决了使用模型过氧化氢铁配合物通过血红素加氧酶(HO)引起的血红素降解的机理。已知HO捕获血红素分子并降解它们以维持生物系统中的铁稳态(Ortiz de Montellano,P.R.Acc.Chem.Res.1998,31,543)。降解通过血红素的络合开始,然后形成铁-氢过氧物质,其随后通过羟基化氧化卟啉的内消旋位置,从而最终使卟啉环断裂。动力学同位素效应研究(Davydov,R .; Matsui,T .; Fujii,H .; Ikeda-Saito,M .; Hoffman,BMJ Am。Chem。Soc。2003,125,16208)表明,该机制在一般情况下有帮助酸通过一串水分子催化,并且所有事件都同时发生。但是,先前的理论处理表明,协同机制具有较高的壁垒,远高于氢过氧化铁的OO键均质分解引发的替代机制(Sharma,PK; Kevorkiants,R。; de Visser,SP; Kumar,D) ; Shaik,S.Angew.Chem.Int.Ed.2004,43,1129)。本贡献研究了使用H3O +(H2O)(n),n = 0-2的逐步和协同的酸催化机理。使用H4N +(H2O)(2)簇和完全质子化的氢过氧化铁测试酸强度的影响。所有的计算表明,在速率确定步骤中,涉及质子传递和O-O均质分解的逐步机理具有比相应的完全协同机理低得多的势垒(> 10 kcal / mol)。对于H3O +(H2O)(2)簇,可以将计算得出的溶剂动力学同位素效应与实验数据进行最佳拟合。计算得出的cc-氘二次动力学同位素效应是相反的(0.95-0.98),但远小于实验值(0.7)。讨论了这种数量差异的可能原因。提出了一些可以使实验从协调机制中逐步区分的探究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号