首页> 外文期刊>Journal of the American Chemical Society >Path Sampling Calculation Of Methane Diffusivity In Natural Gas Hydrates From A Water-vacancy Assisted Mechanism
【24h】

Path Sampling Calculation Of Methane Diffusivity In Natural Gas Hydrates From A Water-vacancy Assisted Mechanism

机译:利用空缺辅助机制计算天然气水合物中甲烷扩散率的路径采样

获取原文
获取原文并翻译 | 示例
       

摘要

Increased interest in natural gas hydrate formation and decomposition, coupled with experimental difficulties in diffusion measurements, makes estimating transport properties in hydrates an important technological challenge. This research uses an equilibrium path sampling method for free energy calculations [Radhakrishnan, R.; Schlick, T. J. Chem. Phys. 2004, 121, 2436] with reactive flux and kinetic Monte Carlo simulations to estimate the methane diffusivity within a structure I gas hydrate crystal. The calculations support a water-vacancy assisted diffusion mechanism where methane hops from an occupied "donor" cage to an adjacent "acceptor" cage. For pathways between cages that are separated by five-membered water rings, the free energy landscape has a high barrier with a shallow well at the top. For pathways between cages that are separated by six-membered water rings, the free energy calculations show a lower barrier with no stable intermediate. Reactive flux simulations confirm that many reactive trajectories become trapped in the shallow intermediate at the top of the barrier leading to a small transmission coefficient for these paths. Stable intermediate configurations are identified as doubly occupied off-pathway cages and methane occupying the position of a water vacancy. Rate constants are computed and used to simulate self-diffusion with a kinetic Monte Carlo algorithm. Self-diffusion rates were much slower than the Einstein estimate because of lattice connectivity and methane's preference for large cages over small cages. Specifically, the fastest pathways for methane hopping are arranged in parallel (nonintersecting) channels, so methane must hop via a slow pathway to escape the channel. From a computational perspective, this paper demonstrates that equilibrium path sampling can compute free energies for a broader class of coordinates than umbrella sampling with molecular dynamics. From a technological perspective, this paper provides one estimate for an important transport property that has been difficult to measure. In a hydrate I crystal at 250 K with nearly all cages occupied by methane, we estimate D ≈ 7 × 10~(-15) X m~2/s where X is the fraction of unoccupied cages.
机译:对天然气水合物形成和分解的兴趣日益增加,再加上扩散测量中的实验困难,使得估算水合物中的输运性质成为一项重要的技术挑战。这项研究使用平衡路径采样方法进行自由能计算[Radhakrishnan,R .; Schlick,T.J.Chem。物理2004,121,2436]用反应通量和动力学蒙特卡罗模拟来估计结构I气体水合物晶体中甲烷的扩散率。该计算支持水空位辅助扩散机制,其中甲烷从被占用的“施主”笼子跳到相邻的“受主”笼子。对于由五元水环分隔的网箱之间的路径,自由能景观具有较高的屏障,顶部具有浅井。对于由六元水环分隔的网箱之间的路径,自由能计算显示出较低的势垒,没有稳定的中间体。电抗通量仿真证实,许多电抗轨道被困在势垒顶部的浅层中间,导致这些路径的传输系数较小。稳定的中间构型被确定为双重占用的越野笼子,甲烷占据了缺水位置。计算速率常数,并使用动力学蒙特卡洛算法将其用于模拟自扩散。自扩散速度比爱因斯坦估计的慢得多,这是因为晶格连通性以及甲烷相对于小笼子更喜欢大笼子。具体而言,最快的甲烷跳跃路径被安排在平行(非相交)通道中,因此甲烷必须通过慢速路径跳跃才能逃脱通道。从计算的角度来看,本文证明,与具有分子动力学的伞式采样相比,平衡路径采样可以为更广泛的坐标类计算自由能。从技术角度来看,本文提供了一种对难以测量的重要运输性能的估计。在250 K的水合物I晶体中,几乎所有笼子都被甲烷占据,我们估计D≈7×10〜(-15)X m〜2 / s,其中X是空着的笼子的分数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号