首页> 外文期刊>Journal of the American Chemical Society >Visible Light Generation of Iodine Atoms and I-I Bonds: Sensitized I~- Oxidation and l_3~- Photodissociation
【24h】

Visible Light Generation of Iodine Atoms and I-I Bonds: Sensitized I~- Oxidation and l_3~- Photodissociation

机译:碘原子和I-I键的可见光产生:敏化的I〜-氧化和l_3〜-光解离

获取原文
获取原文并翻译 | 示例
       

摘要

Direct 355 or 532 nm light excitation of TBAI_3, where TBA is tetrabutyl ammonium, in CH_3CN at room temperature yields an iodine atom, I~*, and an iodine radical anion, l_2~-. In the presence of excess iodide, the iodine atom reacts quantitatively to yield a second equivalent of I_2~- with a rate constant of k = 2.5 ± 0.4 × 10~(10) M~(-1) s~(-1). The I_2~- intermediates are unstable with respect to disproportionation and yield initial reactants, κ= 3.3 ± 0.1 × 10~9 M~(-1) s~(-1). The coordination compound Ru(bpz)_2(deeb)(PF_6)_2, where bpz is 2,2'-bipyrazine and deeb is 4,4'-(C_2H_5CO_2)_2-2,2'-bipyridine, was prepared and characterized for mechanistic studies of iodide photo-oxidation in acetonitrile at room temperature. Ru(bpz)_2(deeb)~(2+) displayed a broad metal-to-ligand charge transfer (MLCT) absorption band at 450 nm with ε = 1.7 × 10~4 M~(-1) cm~(-1). Visible light excitation resulted in photoluminescence with a corrected maximum at 620 nm, a quantum yield ø = 0.14, and an excited state lifetime τ = 1.75 μs from which k_r = 8.36 × 10~4 s~(-1) and k_(nr) = 5.01 × 10~5 s~(-1) were abstracted. Arrhenius analysis of the temperature dependent excited state lifetime revealed an activation energy of ~2500 cm~(-1) and a pre-exponential factor of 10~(10) s~(-1), assigned to activated surface crossing to a ligand field or MLCT excited state. Steady state light excitation of Ru(bpz)_2(deeb)~(2+) in a 20 mM TBAI acetonitrile solution resulted in ligand loss photochemistry with a quantum yield of 5 × 10~(-5). The MLCT excited state was dynamically quenched by iodide with K_(sv) = 1.1 × 10~5 M~(-1) and k_q = 6.6 ± 0.3 × 10~(10) M~(-1) s~(-1) a value consistent with diffusion-limited electron transfer. Excited state hole transfer to iodide was quantitative but the product yield was low due to poor cage escape yields, ø_(ce) = 0.042 ± 0.001. Nanosecond transient absorption was used to quantify the appearance of two photoproducts [Ru(bpz~-)(bpz)(deeb)]~+ and I_2~-. The coincidence of the rate constants for [Ru(bpz~-)(bpz)(deeb)]~+ formation and for excited state decay indicated reductive quenching by iodide. The rate constant for the appearance of I_2~- was about a factor of 3 slower than excited state decay, k=2A± 0.2 × 10~(10) M~(-1) s~(-1) indicating that I_2~- was not a primary photoproduct of excited state electron transfer. A mechanism was proposed where an iodine atom was the primary photoproduct that subsequently reacted with iodide, I~* + I~- → I_2~-. Charge recombination Ru(bpz~-)(bpz)(deeb)~+ + I_2~-→ Ru(bpz)_2(deeb)~(2+) + 2I~- was highly favored, ΔG° = -1.64 eV, and well described by a second-order equal concentration kinetic model, k_(cr) = 2.1 ± 0.3 × 10~(10) M~(-1) s~(-1).
机译:室温下在CH_3CN中对TBAI_3(其中TBA为四丁基铵)进行355或532 nm的直接光激发,产生碘原子I〜*和碘自由基阴离子l_2〜-。在过量碘化物的存在下,碘原子定量反应以产生第二当量的I_2〜-,其速率常数为k = 2.5±0.4×10〜(10)M〜(-1)s〜(-1)。 I_2〜-中间体相对于歧化不稳定,并产生初始反应物,κ= 3.3±0.1×10〜9 M〜(-1)s〜(-1)。制备了配位化合物Ru(bpz)_2(deeb)(PF_6)_2,其中bpz为2,2'-联吡嗪,deeb为4,4'-(C_2H_5CO_2)_2-2,2'-联吡啶。室温下乙腈中碘化物光氧化的机理研究。 Ru(bpz)_2(deeb)〜(2+)在450 nm处具有宽的金属-配体电荷转移(MLCT)吸收带,ε= 1.7×10〜4 M〜(-1)cm〜(-1 )。可见光激发导致光致发光,校正后的最大值为620 nm,量子产率ø= 0.14,激发态寿命τ= 1.75μs,其中k_r = 8.36×10〜4 s〜(-1)和k_(nr) = 5.01×10〜5 s〜(-1)对温度相关的激发态寿命进行的Arrhenius分析显示,活化能为2500 cm〜(-1),预指数因子为10〜(10)s〜(-1),分配给活化表面与配体场交叉或MLCT激发态。 Ru(bpz)_2(deeb)〜(2+)在20 mM TBAI乙腈溶液中的稳态光激发导致配体损失光化学,量子产率为5×10〜(-5)。 MLCT激发态通过碘化物以K_(sv)= 1.1×10〜5 M〜(-1)和k_q = 6.6±0.3×10〜(10)M〜(-1)s〜(-1)动态淬灭与扩散受限的电子转移一致的值。激发态空穴转移到碘化物上是定量的,但是由于笼逃逸率差而导致产物收率低,ø_(ce)= 0.042±0.001。纳秒瞬态吸收用于量化两个光产物[Ru(bpz〜-)(bpz)(deeb)]〜+和I_2〜-的外观。形成[Ru(bpz〜-)(bpz)(deeb)] +的速率常数与激发态衰变的速率常数一致,表明了碘化物的还原猝灭。 I_2〜-出现的速率常数比激发态衰减慢约3倍,k = 2A±0.2×10〜(10)M〜(-1)s〜(-1)表示I_2〜-不是激发态电子转移的主要光产物。提出了一种机制,其中碘原子是主要的光产物,随后与碘化物I〜* + I〜-→I_2〜-反应。强烈建议使用电荷重组Ru(bpz〜-)(bpz)(deeb)〜+ + I_2〜-→Ru(bpz)_2(deeb)〜(2+)+ 2I〜-,ΔG°= -1.64 eV,并且用二阶等浓度动力学模型很好地描述了k_(cr)= 2.1±0.3×10〜(10)M〜(-1)s〜(-1)。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2009年第44期|16206-16214|共9页
  • 作者单位

    Departments of Chemistry and Materials Science & Engineering, Johns Hopkins University,3400 North Charles Street, Baltimore, Maryland, 21218;

    Departments of Chemistry and Materials Science & Engineering, Johns Hopkins University,3400 North Charles Street, Baltimore, Maryland, 21218;

    Departments of Chemistry and Materials Science & Engineering, Johns Hopkins University,3400 North Charles Street, Baltimore, Maryland, 21218;

    Departments of Chemistry and Materials Science & Engineering, Johns Hopkins University,3400 North Charles Street, Baltimore, Maryland, 21218;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:17:26

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号