首页> 外文期刊>Journal of the American Chemical Society >Precursor Conversion Kinetics and the Nucleation of Cadmium Selenide Nanocrystals
【24h】

Precursor Conversion Kinetics and the Nucleation of Cadmium Selenide Nanocrystals

机译:前体转化动力学和硒化镉纳米晶体的成核

获取原文
获取原文并翻译 | 示例
           

摘要

The kinetics of cadmium selenide (CdSe) nanocrystal formation was studied using UV-visible absorption spectroscopy integrated with an automated, high-throughput synthesis platform. Reaction of anhydrous cadmium octadecylphosphonate (Cd-ODPA) with alkylphosphine selenides (1, tri-n-octylphos-phine selenide; 2, di-n-butylphenylphosphine selenide; 3, n-butyldiphenylphosphine selenide) in recrystallized tri-n-octylphosphine oxide was monitored by following the absorbance of CdSe at X = 350 nm, where the extinction coefficient is independent of size, and the disappearance of the selenium precursor using {~1H}~(31)P NMR spectroscopy. Our results indicate that precursor conversion limits the rate of nanocrystal nucleation and growth. The initial precursor conversion rate (Q_o) depends linearly on [1] (Q_o(1) = 3.0-36 μM/s) and decreases as the number of aryl groups bound to phosphorus increases (1 > 2 > 3). Changes to Q_o influence the final number of nanocrystals and thus control particle size. Using similar methods, we show that changing [ODPA] has a negligible influence on precursor reactivity while increasing the growth rate of nuclei, thereby decreasing the final number of nanocrystals. These results are interpreted in light of a mechanism where the precursors react in an irreversible step that supplies the reaction medium with a solute form of the semiconductor.
机译:使用集成了自动化,高通量合成平台的紫外-可见吸收光谱法研究了硒化镉(CdSe)纳米晶体形成的动力学。在重结晶的三正辛基膦氧化物中,无水十八烷基膦酸镉(Cd-ODPA)与烷基膦硒化物(1,三正辛基膦膦硒化物; 2,二正丁基苯基膦硒化物; 3,正丁基二苯基膦硒化物)反应使用{〜1H}〜(31)P NMR光谱,通过跟踪CdSe在X = 350 nm处的吸光度进行监测,其中消光系数与尺寸无关,并且硒前体的消失。我们的结果表明,前驱体转化限制了纳米晶成核和生长的速率。初始前体转化率(Q_o)线性取决于[1](Q_o(1)= 3.0-36μM/ s),并随着与磷结合的芳基数量的增加而降低(1> 2> 3)。 Q_o的变化会影响纳米晶体的最终数量,从而控制粒径。使用类似的方法,我们表明改变[ODPA]对前体反应性的影响可忽略不计,同时增加了核的生长速率,从而减少了纳米晶体的最终数量。这些结果是根据前体在不可逆步骤中反应的机理来解释的,该步骤为反应介质提供了半导体的溶质形式。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2010年第51期|p.18206-18213|共8页
  • 作者单位

    Department of Chemistry, Columbia University,Department of Chemistry, University of California, Berkeley, and Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States;

    Molecular Foundry, Lawrence Berkeley National Laboratory,Department of Chemistry, University of California, Berkeley, and Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States;

    Department of Chemistry, University of Pittsburgh,Department of Chemistry, University of California, Berkeley, and Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States;

    Lawrence Berkeley National Laboratory,Department of Chemistry, University of California, Berkeley, and Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号