首页> 外文期刊>Journal of the American Chemical Society >De Novo Design of Peptide-Calcite Biomineralization Systems
【24h】

De Novo Design of Peptide-Calcite Biomineralization Systems

机译:肽-方解石生物矿化系统的从头设计

获取原文
获取原文并翻译 | 示例
           

摘要

Many organisms produce complex, hierarchically structured, inorganic materials via protein-influenced crystal growth-a process known as biomineralization. Understanding this process would shed light on hard-tissue formation and guide efforts to develop biomaterials. We created and tested a computational method to design protein-biomineralization systems. The algorithm folds a protein from a fully extended structure and simultaneously optimizes the fold, orientation, and sequence of the protein adsorbed to a crystal surface. We used the algorithm to design peptides (16 residues) to modify calcite (CaCO_3) crystallization. We chemically synthesized six peptides that were predicted to bind different states of a calcite growth plane. All six peptides dramatically affected calcite crystal growth (as observed by scanning electron microscopy), and the effects were dependent on the targeted state of the {001} growth plane. Additionally, we synthesized and assayed scrambled variants of all six designed peptides to distinguish cases where sequence composition determines the interactions versus cases where sequence order (and presumably structure) plays a role. Scrambled variants of negatively charged peptides also had dramatic effects on calcite crystallization; in contrast, scrambled variants of positively charged peptides had a variable effect on crystallization, ranging from dramatic to mild. Special emphasis is often placed on acidic protein residues in calcified tissue mineralization; the work presented here suggests an important role for basic residues as well. In particular, this work implicates a potential role for basic residues in sequence-order specificity for peptide-mineral interactions.
机译:许多生物通过受蛋白质影响的晶体生长来生产复杂的,层次结构化的无机材料,这一过程称为生物矿化。了解该过程将有助于了解硬组织的形成并指导开发生物材料的努力。我们创建并测试了一种设计蛋白质生物矿化系统的计算方法。该算法从完全延伸的结构折叠蛋白质,并同时优化吸附到晶体表面的蛋白质的折叠,方向和顺序。我们使用该算法设计了肽(16个残基)来修饰方解石(CaCO_3)结晶。我们化学合成了六种肽,它们被预测会结合方解石生长平面的不同状态。所有六种肽均显着影响方解石晶体的生长(通过扫描电子显微镜观察),其效果取决于{001}生长平面的目标状态。此外,我们合成并分析了全部六个设计肽段的加扰变体,以区分序列组成决定相互作用的情况与序列顺序(可能是结构)起作用的情况。带负电荷的肽的杂乱变体也对方解石结晶产生了显着影响。相反,带正电荷的肽的混乱变体对结晶具有可变的影响,范围从剧烈到轻微。特别强调钙化组织矿化中的酸性蛋白质残留。这里介绍的工作也暗示了基本残留物的重要作用。特别地,这项工作暗示了碱性残基在肽-矿物质相互作用的序列顺序特异性中的潜在作用。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2010年第35期|p.12252-12262|共11页
  • 作者单位

    Program in Molecular Biophysics,Johns Hopkins University, Baltimore, Maryland 21218;

    rnDepartment of Chemical and Biomolecular Engineering,Johns Hopkins University, Baltimore, Maryland 21218;

    rnDepartment of Chemical and Biomolecular Engineering,Johns Hopkins University, Baltimore, Maryland 21218;

    rnProgram in Molecular Biophysics,Johns Hopkins University, Baltimore, Maryland 21218 Department of Chemical and Biomolecular Engineering,Johns Hopkins University, Baltimore, Maryland 21218;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号