首页> 外文期刊>Journal of the American Chemical Society >Formation of Interpenetrating Hierarchical Titania Structures by Confined Synthesis in Inverse Opal
【24h】

Formation of Interpenetrating Hierarchical Titania Structures by Confined Synthesis in Inverse Opal

机译:反蛋白石中受限合成的互穿层状二氧化钛结构的形成

获取原文
获取原文并翻译 | 示例
       

摘要

Hierarchical periodic titania nanostructures composed of a macroporous crystalline scaffold and mesoporous titania were prepared by confined synthesis. The strategy for the generation of these hierarchical structures involves preparation of inverse opal titania layers and subsequent filling of the interstitial macroporous voids with surfactant-containing titania precursors to obtain a mesostructured titania phase using the surfactant Pluronic P123. The formation of mesostructure in the confined space of the macroporous scaffold upon thermal treatment was investigated with in situ grazing incidence small-angle X-ray scattering (GISAXS). The macroporous scaffold strongly influences the mesostructure assembly and leads to much larger structural parameters of the formed mesostructure, this effect becoming more pronounced with decreasing pore size of the macroporous host. Furthermore, the inverse opal scaffold acts as a stabilizing matrix, limiting the shrinkage of the mesopores upon heating. This effect is coupled with an enhanced crystallization of the mesophase, which is attributed to the crystalline walls of the macroporous host. Sorption measurements of the final hierarchical titania structure of 5 μm thickness show that the porous system is fully accessible, has a high total surface area of 154 m /g, and has an average mesopore size of 6.1 nm, which is about 20% larger than the pore size of 5.1 nm for the reference mesoporous film obtained on a flat substrate. These hierarchical structures were implemented as anodes in dye-sensitized solar cells (DSCs), showing a conversion efficiency of 4% under one sun illumination, whereas the calcined macroporous scaffold alone shows an efficiency of only 0.4%.
机译:通过限制合成制备了由大孔晶体支架和中孔二氧化钛组成的分层周期性二氧化钛纳米结构。产生这些分层结构的策略包括制备反蛋白石二氧化钛层,然后用含表面活性剂的二氧化钛前体填充间隙大孔空隙,以使用表面活性剂Pluronic P123获得介孔结构的二氧化钛相。利用原位掠入射小角X射线散射(GISAXS)研究了热处理后大孔支架密闭空间内的介孔结构的形成。大孔支架强烈影响介孔结构的组装并导致形成的介孔结构的结构参数大得多,随着大孔主体的孔径减小,这种作用变得更加明显。此外,反蛋白石支架充当稳定基质,限制了中孔在加热时的收缩。这种作用与中间相结晶的增强有关,这归因于大孔基质的结晶壁。最终的分层二氧化钛结构(厚度为5μm)的吸附测量表明,该多孔系统是完全可访问的,具有154 m / g的高总表面积,并且平均中孔尺寸为6.1 nm,比其中的大约20%。在平坦基材上获得的参考介孔膜的孔径为5.1 nm。这些分层结构被实现为染料敏化太阳能电池(DSC)中的阳极,在一个阳光照射下显示出4%的转换效率,而单独煅烧的大孔支架仅显示0.4%的转换效率。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2011年第43期|p.17274-17282|共9页
  • 作者单位

    Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstrasse 11,Gerhard-Ertl-Building (E), 81377 Munich, Germany;

    Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstrasse 11,Gerhard-Ertl-Building (E), 81377 Munich, Germany;

    Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstrasse 11,Gerhard-Ertl-Building (E), 81377 Munich, Germany;

    Institute of Biophysics and Nanosystems Research, Austrian Academy of Sciences, Schmiedlstrasse 6, 8042 Graz, Austria;

    Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstrasse 11,Gerhard-Ertl-Building (E), 81377 Munich, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:14:30

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号