首页> 外文学位 >Design, fabrication, and utilization of silica inverse opal structures for flow-through catalyst supports.
【24h】

Design, fabrication, and utilization of silica inverse opal structures for flow-through catalyst supports.

机译:设计,制造和利用二氧化硅反蛋白石结构用于流通式催化剂载体。

获取原文
获取原文并翻译 | 示例

摘要

Enzymes are used in a wide range of industries for various different chemical processes. Optimizing the performance of enzymes remains an area of high interest in many research labs. An enzyme is often immobilized on or within a support structure, which allows for the biocatalyst to be relatively easy to recover post-reaction. Immobilization can also increase the structural stability of the enzyme, which is beneficial from a cost standpoint because pure enzymes can be expensive. By choosing the appropriate support and immobilization chemistry, it is possible to maximize the efficiency of a biocatalyst. The purpose of this work was to design, fabricate and utilize inverse opal structures as a support for the immobilization of enzymes.;We have developed a flow-through silica inverse opal structure that was used for the immobilization of biocatalysts. The inverse opal structures were created using polystyrene nanospheres as a template, sol-gel chemistry to deposit silica in the interstitial spaces between the nanospheres, and solvent dissolution to remove the template. Scanning electron microscopy and dynamic light scattering were used to characterize the nanospheres and structures. The silica inverse opal structure has a relatively high surface area, and a surface that is amenable to a wide range of surface modification reactions. Two enzymes were chosen to evaluate our catalyst support structure; glucose oxidase and alkaline phosphatase. Absorbance and fluorescence measurements were used for the enzyme assays.;Our results show an enhancement in reactivity that is associated with enzyme immobilization and nano-confinement, and also underscore limitations inherent to this approach. Three different reaction formats were examined: solution phase, immobilized enzymes on planar supports, and enzymes immobilized on the flow-through inverse opal structure. Glucose oxidase exhibited an increase in reactivity when comparing planar vs. solution phase and inverse opal vs. planar structural formats. This finding indicated an enhancement due to the immobilization process and due to the nanoconfinement of the enzyme within the inverse opal structure. In contrast, alkaline phosphatase exhibited a reduced activity when comparing solution phase vs. enzyme immobilized on planar and inverse opal structures. This finding illustrated the importance of identifying immobilization chemistry that maintains the enzyme in an active form and binds the enzyme in a way that leaves the reactive site accessible. An enhancement was observed for the inverse opal structure vs. the planar support, indicating that there remains the positive effect associated with nano-confinement of the enzyme.;This project proved to be enlightening by showing the enhancements in activity for glucose oxidase, and also by showing that there are limitations that need to be addressed in the alkaline phosphatase results. There will be continued work to further characterize and optimize the flow-through inverse opal structures. In addition, it may be useful to examine the use of other materials for the inverse opal support itself. The results of this work are promising for the utilization of inverse opal structures to immobilize and optimize the performance of enzymes.
机译:酶在各种工业中用于各种不同的化学过程。在许多研究实验室中,优化酶的性能仍然是人们高度关注的领域。酶通常固定在载体结构上或内部,这使得生物催化剂相对容易恢复反应后。固定化还可以增加酶的结构稳定性,从成本的角度来看这是有益的,因为纯酶可能很昂贵。通过选择合适的载体和固定化化学物质,可以最大化生物催化剂的效率。这项工作的目的是设计,制造和利用蛋白石反蛋白石结构作为酶固定化的支持。我们已经开发出一种流化二氧化硅反蛋白石结构,用于固定生物催化剂。使用聚苯乙烯纳米球作为模板,溶胶-凝胶化学法在纳米球之间的间隙空间中沉积二氧化硅,并进行溶剂溶解以去除模板,从而形成反蛋白石结构。扫描电子显微镜和动态光散射被用来表征纳米球和结构。二氧化硅反蛋白石结构具有相对较高的表面积,并且其表面适于广泛的表面改性反应。选择了两种酶来评估我们的催化剂载体结构;葡萄糖氧化酶和碱性磷酸酶。酶测定使用吸光度和荧光测量。我们的结果表明,与酶固定和纳米约束有关的反应性增强,也强调了该方法固有的局限性。检查了三种不同的反应形式:溶液相,固定在平面载体上的酶和固定在流通式反蛋白石结构上的酶。当比较平面相与溶液相和反蛋白石相与平面结构形式时,葡萄糖氧化酶显示出反应性的增加。该发现表明由于固定过程和由于蛋白石逆向蛋白石内的纳米约束而增强了蛋白。相反,当将溶液相与固定在平面和反蛋白石结构上的酶进行比较时,碱性磷酸酶的活性降低。这一发现说明了鉴定固定化酶的重要性,该固定化酶可使酶保持活性形式并以使反应位点可访问的方式与酶结合。观察到蛋白石反蛋白结构相对于平面支持物的增强,表明仍然存在与酶的纳米约束相关的积极作用。;该项目通过显示葡萄糖氧化酶活性的增强而得到启发,并且通过显示在碱性磷酸酶结果中需要解决的局限性。将继续进行工作,以进一步表征和优化流通式反蛋白石结构。另外,检查反蛋白石支撑本身的其他材料的使用可能是有用的。这项工作的结果对于利用反蛋白石结构固定和优化酶的性能是很有前途的。

著录项

  • 作者

    Gornowich, Douglas B.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Chemistry General.;Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 138 p.
  • 总页数 138
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:41:05

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号