...
首页> 外文期刊>Journal of the American Chemical Society >Dissecting Force Interactions in Cellulose Deconstruction Reveals the Required Solvent Versatility for Overcoming Biomass Recalcitrance
【24h】

Dissecting Force Interactions in Cellulose Deconstruction Reveals the Required Solvent Versatility for Overcoming Biomass Recalcitrance

机译:解剖纤维素分解中的力相互作用揭示了克服生物量顽固性所需的溶剂多功能性

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Pretreatment for deconstructing the multifaceted interaction network in crystalline cellulose is a limiting step in making fuels from lignocellulosic biomass. Not soluble in water and most organic solvents, cellulose was found to dissolve in certain classes of ionic liquids (ILs). To elucidate the underlying mechanisms, we simulated cellulose deconstruction by peeling off an 11-residue glucan chain from a cellulose microfibril and computed the free-energy profile in water and in l-butyl-3-methylimidazolium chloride (BmimCl) IL. For this deconstruc- tion process, the calculated free-energy cost/reduction in water/BmimCl is ~2 kcal/mol per glucose residue, respectively. To unravel the molecular origin of solvent-induced differences, we devised a coarse graining scheme to dissect force interactions in simulation models by a force-matching method. The results establish that solvent-glucan interactions are dependent on the deconstruction state of cellulose. Water couples to the hydroxyl and side-chain groups of glucose residues more strongly in the peeled-off state but lacks driving forces to interact with sugar rings and linker oxygens. Conversely, BmimCl demonstrates versatility in targeting glucose residues in cellulose. Anions strongly interact with hydroxyl groups, and the coupling of cations to side chains and linker oxygens is stronger in the peeled-off state. Other than enhancing anion-hydroxyl group coupling, coarse-grain analysis of force interactions identifies configuring cations to target side chains and linker oxygens as a useful design strategy for pretreatment ILs. Furthermore, the state dependence of solvent-glucan interactions highlights specific stabilization and/or frustration of the different structure states of cellulose as important design parameters for pretreatment solvents.
机译:在木质纤维素生物质中制备燃料的过程中,用于解构结晶纤维素中多层面相互作用网络的预处理是一个限制步骤。发现纤维素不溶于水和大多数有机溶剂,可溶于某些类型的离子液体(ILs)。为了阐明潜在的机制,我们通过从纤维素微原纤维上剥离11个残基的葡聚糖链来模拟纤维素的解构,并计算了水和1-丁基-3-甲基咪唑鎓氯化物(BmimCl)IL中的自由能分布。对于这种解构过程,每葡萄糖残基计算出的自由能成本/水/ BmimCl的减少量分别为〜2 kcal / mol。为了揭示溶剂引起的差异的分子起源,我们设计了一种粗粒度方案,通过力匹配方法在模拟模型中分析力相互作用。结果证实,溶剂-葡聚糖相互作用取决于纤维素的解构状态。在剥离状态下,水与葡萄糖残基的羟基和侧链基团更牢固地偶联,但是缺乏与糖环和接头氧相互作用的驱动力。相反,BmimCl在靶向纤维素中的葡萄糖残基方面显示出多功能性。阴离子与羟基强烈相互作用,并且在剥离状态下阳离子与侧链和接头氧的偶联作用更强。除了增强阴离子与羟基的偶联以外,对力相互作用的粗粒分析还确定了将阳离子配置到目标侧链和接头氧的方法,作为预处理IL的有用设计策略。此外,溶剂-葡聚糖相互作用的状态依赖性突出了纤维素不同结构状态的特定稳定性和/或抑制性,这是预处理溶剂的重要设计参数。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2011年第35期|p.14033-14041|共9页
  • 作者单位

    Department of Chemical and Biomolecular Engineering, Energy Biosciences Institute, University of California, Berkeley, Berkeley, California, United States;

    Department of Chemical and Biomolecular Engineering, Energy Biosciences Institute, University of California, Berkeley, Berkeley, California, United States;

    Department of Chemical and Biomolecular Engineering, Energy Biosciences Institute, University of California, Berkeley, Berkeley, California, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号