首页> 外文期刊>Journal of the American Chemical Society >Restructuring the Crystalline Cellulose Hydrogen Bond Network Enhances Its Depolymerization Rate
【24h】

Restructuring the Crystalline Cellulose Hydrogen Bond Network Enhances Its Depolymerization Rate

机译:重组结晶纤维素氢键网络可提高其解聚速率

获取原文
获取原文并翻译 | 示例
           

摘要

Conversion of lignocellulose to biofuels is partly inefficient due to the deleterious impact of cellulose crystallinity on enzymatic saccharification. We demonstrate how the synergistic activity of cellulases was enhanced by altering the hydrogen bond network within crystalline cellulose fibrils. We provide a molecular-scale explanation of these phenomena through molecular dynamics (MD) simulations and enzymatic assays. Ammonia transformed the naturally occurring crystalline allomorph Is to IHj, which led to a decrease in the number of cellulose intrasheet hydrogen bonds and an increase in the number of intersheet hydrogen bonds. This rearrangement of the hydrogen bond network within cellulose IEj, which increased the number of solvent-exposed glucan chain hydrogen bonds with water by ~50%, was accompanied by enhanced saccharification rates by up to 5-fold (closest to amorphous cellulose) and 60-70% lower maximum surface-bound cellulase capacity. The enhancement in apparent cellulase activity was attributed to the "amorphous-like" nature of the cellulose Hi! fibril surface that facilitated easier glucan chain extraction. Unrestricted substrate accessibility to active-site clefts of certain endocellulase families further accelerated deconstruction of cellulose Ⅲ. Structural and dynamical features of celluloseⅢ, revealed by MD simulations, gave additional insights into the role of cellulose crystal structure on fibril surface hydration that influences interfacial enzyme binding. Subtle alterations within the cellulose hydrogen bond network provide an attractive way to enhance its deconstruction and offer unique insight into the nature of cellulose recalcitrance. This approach can lead to unconventional pathways for development of novel pretreatments and engineered cellulases for cost-effective biofuels production.
机译:由于纤维素结晶度对酶促糖化的有害影响,木质纤维素向生物燃料的转化部分效率低下。我们证明了如何通过改变结晶纤维素原纤维内的氢键网络来增强纤维素酶的协同活性。我们通过分子动力学(MD)模拟和酶促测定对这些现象进行了分子尺度的解释。氨将天然存在的结晶同质异形体Is转化为IHj,这导致纤维素片内氢键数量减少,而片间氢键数量增加。纤维素IEj中氢键网络的这种重排使与溶剂接触的葡聚糖链氢键的数量增加了约50%,同时糖化速率提高了5倍(最接近无定形纤维素)和60最大表面结合纤维素酶的容量降低-70%。表观纤维素酶活性的增强归因于纤维素Hi!的“无定形”性质。原纤维表面,有助于更容易地提取葡聚糖链。对某些内切纤维素酶家族的活性位点的无限制底物可及性进一步加速了纤维素Ⅲ的解构。 MD模拟揭示了纤维素Ⅲ的结构和动力学特征,从而进一步了解了纤维素晶体结构在原纤维表面水化中影响界面酶结合的作用。纤维素氢键网络中的细微变化提供了一种吸引人的方式来增强其解构性,并提供了对纤维素难降解性的独特见解。这种方法可以导致开发新颖的预处理方法和工程纤维素酶的非常规途径,从而生产具有成本效益的生物燃料。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2011年第29期|p.11163-11174|共12页
  • 作者单位

    Biomass Conversion Research Laboratory, Department of Chemical Engineering and Materials Science,DOE Great LakesBioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, United States;

    Theoretical Biology and Biophysics, T-6,Center for Nonlinear Studies (CNLS);

    DOE Great LakesBioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, United States;

    Biomass Conversion Research Laboratory, Department of Chemical Engineering and Materials Science;

    Biomass Conversion Research Laboratory, Department of Chemical Engineering and Materials Science;

    Departments o0f Environmental Science and Chemistry, American University, Washington, D.C. 20016, United States;

    Forest Product Laboratory, USDA Forest Service, Madison, Wisconsin 53726, United States;

    Department of Biochemistry and DOE Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin 53706,United States;

    Department of Biochemistry and DOE Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin 53706,United States;

    Bioscience Division, Los Alamos NationalLaboratory, Los Alamos, New Mexico 87525, United States,Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831,United States;

    Biomass Conversion Research Laboratory, Department of Chemical Engineering and Materials Science,DOE Great LakesBioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, United States;

    Theoretical Biology and Biophysics, T-6;

    Biomass Conversion Research Laboratory, Department of Chemical Engineering and Materials Science,DOE Great LakesBioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号