首页> 外文期刊>Journal of the American Chemical Society >Phase Selection and Site-Selective Distribution by Tin and Sulfur in Supertetrahedral Zinc Gallium Selenides
【24h】

Phase Selection and Site-Selective Distribution by Tin and Sulfur in Supertetrahedral Zinc Gallium Selenides

机译:超四面体硒化锌镓中锡和硫的相选择和位点选择性分布

获取原文
获取原文并翻译 | 示例
           

摘要

Doping is among the most important methods to tune the properties of semiconductors. For dense phase semiconductors, the distribution of dopant atoms in crystal lattices is often random. However, when the size of semiconductors becomes increasingly smaller and reaches the extreme situation as is the case in chalcogen-ide supertetrahedral clusters, different chemically distinct sites (e.g., corner, edge, face, and core) occur, which can dramatically affect the doping chemistry at different sites and also spatial assembly of such dusters into covalent superlattices. In this work, we use the Zn—Ga—Se supertetrahedral dusters and their frameworks as the model system to examine the doping chemistry of Sn~(4+) and S~(2-) in the Zn—Ga—Se dusters. A series of selenide dusters (undoped supertetrahedral T4-ZnGaSe, S-doped T4-ZnGaSeS, Sn-doped T4-ZnGaSnSe, and dual S- and Sn-doped T4-ZnGaSnSeS) have been prepared with various levels of Sn- and S-doping and with different superlattice structures (OCF-1, -5, -40, and -42). The complex compositional and structural features of these materials are dictated by the convoluted interplay of three key factors: (l) the overall charge density and size/shape matching between dusters/frameworks and protonated guest amines determine the framework topology and the doping levels of Sn~(4+) and S~(2-); (2) the site selectivity of Sn~(4+) is dictated by the local charge balance surrounding anionic Se/S sites as required by the electrostatic valence sum rule; and (3) the site selectivity and doping levels of sulfur is dictated by the location and amount of Sn based on hard soft add base (HSAB) principle. The cooperative effect of amine-templating and doping by Sn and/or S leads to a rich chemical system with tunable framework compositions, topologies, and electronic properties.
机译:掺杂是调节半导体性能的最重要方法之一。对于密相半导体,掺杂原子在晶格中的分布通常是随机的。但是,当半导体的尺寸越来越小并达到极端状况时,如硫族元素化物超四面体簇中的情况,就会出现化学上不同的部位(例如,角,边,面和芯),这会极大地影响掺杂在不同位置的化学反应以及这些喷粉器在空间上组装成共价超晶格的过程。在这项工作中,我们使用Zn-Ga-Se超四面体喷粉器及其框架作为模型系统,研究Zn-Ga-Se喷粉器中Sn〜(4+)和S〜(2-)的掺杂化学。已经准备了一系列硒化dust粉(未掺杂的超四面体T4-ZnGaSe,S掺杂的T4-ZnGaSeS,Sn掺杂的T4-ZnGaSnSeS以及S和Sn掺杂的T4-ZnGaSnSeS双重掺杂),并具有不同含量的Sn和S-掺杂并具有不同的超晶格结构(OCF-1,-5,-40和-42)。这些材料的复杂组成和结构特征取决于三个关键因素的相互影响:(l)dust子/骨架与质子化客体胺之间的总体电荷密度和大小/形状匹配决定了骨架拓扑和Sn的掺杂水平〜(4+)和S〜(2-); (2)Sn〜(4+)的位点选择性是由静电价和规则所要求的,围绕在阴离子Se / S位点周围的局部电荷平衡决定的; (3)硫的位点选择性和掺杂水平由基于硬-软添加碱(HSAB)原理的锡的位置和数量决定。 Sn和/或S进行胺模板和掺杂的协同作用会导致化学体系富集,框架结构,拓扑结构和电子特性均可调。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2011年第24期|p.9616-9625|共10页
  • 作者单位

    Department of Chemistry, University of California, Riverside, California 92521, United States;

    Department of Chemistry and Biochemistry, California State University, 1250 Bellflower Boulevard, Long Beach, California 90840,United States;

    Department of Chemistry, University of California, Riverside, California 92521, United States;

    Department of Chemistry, University of California, Riverside, California 92521, United States;

    Department of Chemistry, University of California, Riverside, California 92521, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号