首页> 外文期刊>Journal of the American Chemical Society >Wave Function Engineering for Ultrafast Charge Separation and Slow Charge Recombination in Type II Core/Shell Quantum Dots
【24h】

Wave Function Engineering for Ultrafast Charge Separation and Slow Charge Recombination in Type II Core/Shell Quantum Dots

机译:用于II型核/壳量子点中超快电荷分离和慢电荷复合的波函数工程

获取原文
获取原文并翻译 | 示例
       

摘要

The size dependence of optical and electronic properties of semiconductor quantum dots (QDs) have been extensively studied in various applications ranging from solar energy conversion to biological imaging. Core/shell QDs allow further tuning of these properties by controlling the spatial distributions of the conduction-band electron and valence-band hole wave functions through the choice of the core/shell materials and their size/thickness. It is possible to engineer type II core/shell QDs, such as CdTe/CdSe, in which the lowest energy conduction-band electron is largely localized in the shell while the lowest energy valence-band hole is localized in the core. This spatial distribution enables ultrafast electron transfer to the surface-adsorbed electron acceptors due to enhanced electron density on the shell materials, while simultaneously retarding the charge recombination process because the shell acts as a tunneling barrier for the core localized hole. Using ultrafast transient absorption spectroscopy, we show that in CdTe/CdSe-anthraquinone (AQ) complexes, after the initial ultrafast (~770 fs) intra-QD electron transfer from the CdTe core to the CdSe shell, the shell-localized electron is transferred to the adsorbed AQwith a half-life of 2.7 ps. The subsequent charge recombination from the reduced acceptor, AQ~-, to the hole in the CdTe core has a half-life of 92 ns. Compared to CdSe-AQ.complexes, the type II band alignment in CdTe/CdSe QDs maintains similar ultrafast charge separation while retarding the charge recombination by 100-fold. This unique ultrafast charge separation and slow recombination property, coupled with longer single and multiple exdton lifetimes in type II QDs, suggests that they are ideal light-harvesting materials for solar energy conversion.
机译:在从太阳能转换到生物成像的各种应用中,已经对半导体量子点(QD)的光学和电子特性的尺寸依赖性进行了广泛的研究。核/壳量子点可通过选择核/壳材料及其大小/厚度来控制导带电子和价带空穴函数的空间分布,从而进一步调整这些特性。可以设计II型核/壳QD,例如CdTe / CdSe,其中最低的能量导带电子主要位于壳中,而最低的价带空穴位于核中。由于壳材料上电子密度的增加,这种空间分布使电子能够快速转移到表面吸附的电子受体,同时由于壳充当芯局部孔的隧穿势垒,因此同时阻碍了电荷复合过程。使用超快速瞬态吸收光谱法,我们发现在CdTe / CdSe-蒽醌(AQ)络合物中,初始的超快(〜770 fs)QD电子从CdTe核转移到CdSe壳层后,壳内定位的电子被转移了吸附的AQ的半衰期为2.7 ps。从还原受体AQ〜-到CdTe核中空穴的后续电荷重组具有92 ns的半衰期。与CdSe-AQ复合物相比,CdTe / CdSe量子点中的II型能带排列可保持相似的超快电荷分离,同时将电荷复合延迟100倍。这种独特的超快电荷分离和缓慢重组性能,再加上II型量子点具有更长的一次和多次埃克斯顿寿命,表明它们是用于太阳能转化的理想光收集材料。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2011年第22期|p.8762-8771|共10页
  • 作者单位

    Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States;

    Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States;

    Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:14:16

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号