首页> 外文期刊>Journal of the American Chemical Society >Dynamical Signature of Abasic Damage in DNA
【24h】

Dynamical Signature of Abasic Damage in DNA

机译:DNA中无碱基损伤的动态特征

获取原文
获取原文并翻译 | 示例
       

摘要

Time-dependent Stokes shift (TDSS) responses in proteins and DNA exhibit a broad range of long time scales (>10 ps) that are not present in bulk aqueous solution. The physical interpretation of the long TDSS time scales in biomolecular systems is a matter of considerable debate because of the many different components present in the sample (water, biomolecule, counterions), which have highly correlated motions and intrinsically different abilities to adapt to local perturbations. Here we use molecular dynamics (MD) simulations to show that the surprisingly slow (~10 ns) TDSS response of coumarin 102 (C102), a base pair replacement, reflects a distinct dynamical signature for DNA damage. When the C102 molecule is covalently incorporated into DNA, an abasic site is created on the strand opposite the C102 probe. The abasic sugar exhibits a reversible interchange between intra- and extrahelical conformations that are kinetically stable on a nanosecond time scale. This conformational change, only possible in damaged DNA, was found to be responsible for the long time scales in the measured TDSS response. For the first time, a TDSS measurement has been attributed to a specific biomolecular motion. This finding directly contradicts the prevailing notion that the TDSS response in biomolecular contexts is dominated by hydration dynamics. It also suggests that TDSS experiments can be used to study ultrafast biomolecular dynamics that are inaccessible to other techniques.
机译:蛋白质和DNA中随时间变化的斯托克斯位移(TDSS)反应显示出大范围的长时间标度(> 10 ps),这在散装水溶液中不存在。由于样品中存在许多不同的成分(水,生物分子,抗衡离子),它们具有高度相关的运动并且固有地具有不同的适应局部扰动的能力,因此在生物分子系统中对长TDSS时间尺度的物理解释是一个颇有争议的问题。 。在这里,我们使用分子动力学(MD)模拟表明,香豆素102(C102)碱基对替代品香豆素102(C102)出奇的缓慢(〜10 ns)TDSS反应反映了DNA损伤的独特动力学特征。当将C102分子共价掺入DNA时,在与C102探针相对的链上会产生一个脱碱基位点。玄武糖在纳秒级的动力学上稳定的螺旋内和螺旋外构象之间表现出可逆的互换。发现这种构象变化仅在受损的DNA中可能发生,这是造成所测TDSS反应的长时间尺度的原因。 TDSS测量首次被归因于特定的生物分子运动。这一发现直接与普遍的观念相矛盾,即在生物分子环境中,TDSS反应主要由水化动力学决定。这也表明,TDSS实验可用于研究其他技术无法获得的超快速生物分子动力学。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2011年第4期|p.720-723|共4页
  • 作者单位

    Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States;

    Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:14:05

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号