首页> 外文期刊>Journal of the American Chemical Society >Atomically Thick Bismuth Selenide Freestanding Single Layers Achieving Enhanced Thermoelectric Energy Harvesting
【24h】

Atomically Thick Bismuth Selenide Freestanding Single Layers Achieving Enhanced Thermoelectric Energy Harvesting

机译:原子厚的硒化铋独立单层,实现增强的热电能量收集

获取原文
获取原文并翻译 | 示例
       

摘要

Thermoelectric materials can realize significant energy savings by generating electricity from untapped waste heat. However, the coupling of the thermoelectric parameters unfortunately limits their efficiency and practical applications. Here, a single-layer-based (SLB) composite fabricated from atomically thick single layers was proposed to optimize the thermoelectric parameters fully. Freestanding five-atom-thick Bi_2Se_3 single layers were first synthesized via a scalable interaction/ exfoliation strategy. As revealed by X-ray absorption fine structure spectroscopy and first-principles calculations, surface distortion gives them excellent structural stability and a much increased density of states, resulting in a 2-fold higher electrical conductivity relative to the bulk material. Also, the surface disorder and numerous interfaces in the Bi_2Se_3 SLB composite allow for effective phonon scattering and decreased thermal conductivity, while the 2D electron gas and energy filtering effect increase the Seebeck coefficient, resulting in an 8-fold higher figure of merit (ZT) relative to the bulk material. This work develops a facile strategy for synthesizing atomically thick single layers and demonstrates their superior ability to optimize the thermoelectric energy harvesting.
机译:热电材料可以利用尚未开发的废热发电,从而显着节省能源。然而,不幸的是,热电参数的耦合限制了它们的效率和实际应用。在此,提出了一种由原子厚的单层制成的单层基(SLB)复合材料,以充分优化热电参数。首先通过可扩展的相互作用/剥落策略合成五原子厚的独立Bi_2Se_3单层。正如X射线吸收精细结构光谱学和第一性原理计算所揭示的,表面变形使它们具有出色的结构稳定性和高得多的状态密度,相对于块状材料,其电导率高2倍。此外,Bi_2Se_3 SLB复合材料中的表面无序和大量界面可实现有效的声子散射和降低的热导率,而二维电子气和能量过滤效果可提高塞贝克系数,从而使品质因数(ZT)提高8倍相对于散装材料。这项工作为合成原子厚的单层开发了一种简便的策略,并展示了其优化热电能量收集的卓越能力。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2012年第50期|20294-20297|共4页
  • 作者单位

    Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China;

    National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China;

    Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China;

    National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China;

    National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China;

    Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China;

    Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China;

    National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China;

    Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:13:42

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号