首页> 外文期刊>Journal of the American Chemical Society >A Structure-Function Relationship for the Optical Modulation of Phenyl Boronic Acid-Grafted, Polyethylene Glycol-Wrapped Single-Walled Carbon Nanotubes
【24h】

A Structure-Function Relationship for the Optical Modulation of Phenyl Boronic Acid-Grafted, Polyethylene Glycol-Wrapped Single-Walled Carbon Nanotubes

机译:苯硼酸接枝的聚乙二醇包裹的单壁碳纳米管的光调制的结构-功能关系。

获取原文
获取原文并翻译 | 示例
       

摘要

Phenyl boronic acids (PBA) are important binding ligands to pendant diols useful for saccharide recognition. The aromatic ring can also function to anchor an otherwise hydrophilic polymer backbone to the surface of hydrophobic graphene or carbon nanotube. In this work, we demonstrate both functions using a homologous series of seven phenyl boronic acids conjugated to a polyethylene glycol, eight-membered, branched polymer (PPEG8) that allows aqueous dispersion of single-walled carbon nanotubes (SWNT) and quenching of the near-infrared fluorescence in response to saccharide binding. We compare the 2-carboxyphenylbor-onic acid (2CPBA); 3-carboxy- (3CPBA) and 4-carboxy- (4CPBA) phenylboronic acids; N-(4-phenylboronic)succinamic acid (4SCPBA); 5-bromo-3-carboxy- (5B3CPBA), 3-carboxy-S-fluoro-(5F3CPBA), and 3-carboxy-5-nitro- (5N3CPBA) phenylboronic acids, demonstrating a clear link between SWNT photoluminescence quantum yield and boronic acid structure. Surprisingly, quantum yield decreases systematically with both the location of the BA functionality and the inclusion of electron-withdrawing or -donating substituents on the phenyl ring. For three structural isomers (2CPBA, 3CPBA, and 4CPBA), the highest quantum yields were measured for para-substituted PBA (4CPBA), much higher than ortho- (2CPBA) and meta- (3CPBA) substituted PBA, indicating the first such dependence on molecular structure. Electron-withdrawing substituents such as nitro groups on the phenyl ring cause higher quantum yield, while electron-donating groups such as amides and alkyl groups cause a decrease. The solvatochromic shift of up to 10.3 meV was used for each case to estimate polymer surface coverage on an areal basis using a linear dielectric model. Saccharide recognition using the nlR photoluminescence of SWNT is demonstrated, including selectivity toward pentoses such as arabinose, ribose, and xylose to the exclusion of the expected fructose, which has a high selectivity on PBA due to the formation of a tridentate complex between fructose and PBA This study is the first to conclusively link molecular structure of an adsorbed phase to SWNT optical properties and modulation in a systematic manner.
机译:苯基硼酸(PBA)是重要的结合配体,对可用于糖类识别的悬垂二醇。芳环还可以起到将否则为亲水性的聚合物主链锚定至疏水性石墨烯或碳纳米管的表面的作用。在这项工作中,我们展示了使用与聚乙二醇,八元支化聚合物(PPEG8)共轭的七个苯基硼酸的同源系列实现的两种功能,该功能允许单壁碳纳米管(SWNT)的水分散并在附近淬火-红外荧光响应糖结合。我们比较了2-羧基苯基硼酸(2CPBA); 3-羧基-(3CPBA)和4-羧基-(4CPBA)苯基硼酸; N-(4-苯基硼基)琥珀酰胺酸(4SCPBA); 5-溴-3-羧基-(5B3CPBA),3-羧基-S-氟-(5F3CPBA)和3-羧基-5-硝基-(5N3CPBA)苯基硼酸,表明SWNT光致发光量子产率与硼酸之间有明确的联系酸结构。出乎意料的是,量子产率随着BA官能团的位置以及在苯环上包含吸电子或供电子取代基而系统地降低。对于三种结构异构体(2CPBA,3CPBA和4CPBA),测得对位取代的PBA(4CPBA)的最高量子产率,远高于邻位(2CPBA)和间位(3CPBA)取代的PBA,表明第一个此类依赖性在分子结构上。吸电子取代基(例如苯环上的硝基)引起较高的量子产率,而供电子基团(例如酰胺和烷基)引起量子产率下降。在每种情况下,使用线性介电模型,均采用高达10.3 meV的溶剂化变色来估算聚合物表面的覆盖率。证明了使用SWNT的nlR光致发光识别糖化物,包括对戊糖(如阿拉伯糖,核糖和木糖)的选择性,排除了预期的果糖,由于果糖和PBA之间形成了三齿复合物,因此对PBA的选择性很高。这项研究是第一个系统地将吸附相的分子结构与SWNT光学性质和调制最终联系起来的研究。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2012年第42期|17620-17627|共8页
  • 作者单位

    Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States;

    Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States;

    Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States;

    Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States;

    Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States;

    Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States;

    Department of Chemical Engineering, Hanyang University, Ansan 426-791, Republic of Korea;

    Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States;

    Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:13:38

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号