首页> 外文期刊>Journal of the American Chemical Society >Stabilization of High-Performance Oxygen Reduction Reaction Pt Electrocatalyst Supported on Reduced Graphene Oxide/Carbon Black Composite
【24h】

Stabilization of High-Performance Oxygen Reduction Reaction Pt Electrocatalyst Supported on Reduced Graphene Oxide/Carbon Black Composite

机译:还原氧化石墨烯/炭黑复合材料上负载的高性能氧还原反应Pt电催化剂的稳定性

获取原文
获取原文并翻译 | 示例
       

摘要

Oxygen reduction reaction (ORR) catalyst supported by hybrid composite materials is prepared by well-mixing carbon black (CB) with Pt-loaded reduced graphene oxide (RGO). With the insertion of CB particles between RGO sheets, stacking of RGO can be effectively prevented, promoting diffusion of oxygen molecules through the RGO sheets and enhancing the ORR electrocatalytic activity. The accelerated durability test (ADT) demonstrates that the hybrid supporting material can dramatically enhance the durability of the catalyst and retain the electrochemical surface area (ECSA) of Pt: the final ECSA of the Pt nanocrystal on the hybrid support after 20 000 ADT cycles is retained at >9S%, much higher than the commercially available catalyst. We suggest that the unique 2D profile of the RGO functions as a barrier, preventing leaching of Pt into the electrolyte, and the CB in the vicinity acts as active sites to recapture/renucleate the dissolved Pt species. We furthermore demonstrate that the working mechanism can be applied to the commercial Pt/C product to greatly enhance its durability.
机译:通过将炭黑(CB)与负载Pt的还原氧化石墨烯(RGO)充分混合,可以制备由混合复合材料支撑的氧还原反应(ORR)催化剂。通过在RGO板之间插入CB颗粒,可以有效地防止RGO堆叠,从而促进氧分子通过RGO板扩散,并增强ORR电催化活性。加速耐久性试验(ADT)表明,杂化载体材料可以显着提高催化剂的耐久性并保留Pt的电化学表面积(ECSA):​​在经过20 000次ADT循环后,杂化载体上Pt纳米晶体的最终ECSA为保留率> 9S%,远高于市售催化剂。我们建议RGO的独特2D轮廓充当屏障,防止Pt浸出到电解质中,附近的CB充当重新捕获/重新溶解溶解的Pt物种的活性位点。我们进一步证明,该工作机制可以应用于商业化的Pt / C产品,以大大提高其耐用性。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2012年第30期|p.12326-12329|共4页
  • 作者单位

    Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, California 90095, United States,China University of Petroleum, Beijing;

    Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, California 90095, United States;

    Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, California 90095, United States;

    Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, California 90095, United States;

    Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, California 90095, United States;

    Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, California 90095, United States;

    Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, California 90095, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:13:35

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号