首页> 外文期刊>Journal of the American Chemical Society >Site-Specific Transition Metal Occupation in Multicomponent Pyrophosphate for Improved Electrochemical and Thermal Properties in Lithium Battery Cathodes: A Combined Experimental and Theoretical Study
【24h】

Site-Specific Transition Metal Occupation in Multicomponent Pyrophosphate for Improved Electrochemical and Thermal Properties in Lithium Battery Cathodes: A Combined Experimental and Theoretical Study

机译:多部位焦磷酸盐中特定位置的过渡金属占据,以改善锂电池阴极的电化学和热性能:组合的实验和理论研究

获取原文
获取原文并翻译 | 示例
       

摘要

As an attempt to develop lithium ion batteries with excellent performance, which is desirable for a variety of applications including mobile electronics, electrical vehicles, and utility grids, the battery community has continuously pursued cathode materials that function at higher potentials with efficient kinetics for lithium insertion and extraction. By employing both experimental and theoretical tools, herein we report multicomponent pyrophosphate (Li_2MP_2O_7, M = Fe_(1/3)Mn_(1/3)Co_(1/3)) cathode materials with novel and advantageous properties as compared to the single-component analogues and other multicomponent polyanions. Li)2Fe_(1/3)Mn_(1/3)Co_(1/3)P_2O_7 is formed on the basis of a solid solution among the three individual transition-metal-based pyrophosphates. The unique crystal structure of pyrophosphate and the first principles calculations show that different transition metals have a tendency to preferentially occupy either octahedral or pyramidal sites, and this site-specific transition metal occupation leads to significant improvements in various battery properties: a single-phase mode for Li insertion/extraction, improved cell potentials for Fe~(2+)/Fe~(3+) (raised by 0.18 eV) and Co~(2+)/Co~(3+) (lowered by 0.26 eV), and increased activity for Mn~(2+)/ Mn~(3+) with significantly reduced overpotential. We reveal that the favorable energy of transition metal mixing and the sequential redox reaction for each TM element with a sufficient redox gap is the underlying physical reason for the preferential single-phase mode of Li intercalation/deintercalation reaction in pyrophosphate, a general concept that can be applied to other multicomponent systems. Furthermore, an extremely small volume change of ~0.7% between the fully charged and discharged states and the significantly enhanced thermal stability are observed for the present material, the effects unseen in previous multicomponent battery materials.
机译:为了开发具有优异性能的锂离子电池,这对于包括移动电子设备,电动汽车和公用电网在内的各种应用来说都是理想的,电池界一直在寻求能够以更高的电位运行并具有有效的锂动力学的阴极材料。和提取。通过使用实验工具和理论工具,本文中我们报告了多组分焦磷酸盐(Li_2MP_2O_7,M = Fe_(1/3)Mn_(1/3)Co_(1/3)阴极材料,与单组分相比组分类似物和其他多组分聚阴离子。 Li)2Fe_(1/3)Mn_(1/3)Co_(1/3)P_2O_7是基于三种单独的过渡金属基焦磷酸盐中的固溶体而形成的。焦磷酸盐的独特晶体结构和第一性原理计算表明,不同的过渡金属具有优先占据八面体或金字塔形位点的趋势,并且该位点特定的过渡金属占据率导致了各种电池性能的显着改善:单相模式对于Li的插入/萃取,Fe〜(2 +)/ Fe〜(3+)(提高了0.18 eV)和Co〜(2 +)/ Co〜(3+)(降低了0.26 eV)的电池电势得到了改善, Mn〜(2 +)/ Mn〜(3+)的活性增加,过电势明显降低。我们发现过渡金属混合的有利能量和具有足够氧化还原间隙的每个TM元素的顺序氧化还原反应是焦磷酸盐中Li嵌入/脱嵌反应的优先单相模式的潜在物理原因,该基本概念可以适用于其他多组件系统。此外,对于本材料,观察到在完全充电和放电状态之间极小的体积变化,约为0.7%,并且热稳定性显着增强,这种效果在以前的多组分电池材料中是看不到的。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2012年第28期|p.11740-11748|共9页
  • 作者单位

    Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 305-701, Republic of Korea;

    Graduate School of EEWS (WCU) Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 305-701, Republic of Korea;

    Advanced Batteries Research Center, Korera Electronics Technology Institute (KETI), Bundang-gu, Seongnam-si, Gyeonggi-do 463-816, Republic of Korea;

    Graduate School of EEWS (WCU) Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 305-701, Republic of Korea;

    Energy System Major, School of Mechanical Engineering, Pusan National University, Geumjeong-gu, Busan 609-735, Republic of Korea;

    Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 305-701, Republic of Korea,KAIST Institute nanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 305-701, Republic of Korea;

    Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 305-701, Republic of Korea,Graduate School of EEWS (WCU) Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 305-701, Republic of Korea,KAIST Institute nanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 305-701, Republic of Korea;

    Energy System Major, School of Mechanical Engineering, Pusan National University, Geumjeong-gu, Busan 609-735, Republic of Korea;

    Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 305-701, Republic of Korea,KAIST Institute nanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 305-701, Republic of Korea;

    Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 305-701, Republic of Korea,Graduate School of EEWS (WCU) Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 305-701, Republic of Korea,KAIST Institute nanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 305-701, Republic of Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:13:33

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号