首页> 外文期刊>Journal of the American Chemical Society >Unraveling the Mechanism of Catalytic Reduction of O_2 by Microperoxidase-11 Adsorbed within a Transparent 3D-Nanoporous ITO Film
【24h】

Unraveling the Mechanism of Catalytic Reduction of O_2 by Microperoxidase-11 Adsorbed within a Transparent 3D-Nanoporous ITO Film

机译:阐明透明3D-纳米多孔ITO膜中吸附的微过氧化物酶-11催化还原O_2的机理

获取原文
获取原文并翻译 | 示例
           

摘要

Nanoporous films of indium tin oxide (ITO), with thicknesses ranging from 250 nm to 2 μm, were prepared by Glancing Angle Deposition (GLAD) and used as highly sensitive transparent 3D-electrodes for quantitatively interrogating, by time-resolved spectroelectrochemistry, the reactivity of microperoxidase-11 (MP-11) adsorbed within such films. The capacitive current densities of these 3D-electrodes as well as the amount of adsorbed MP-11 were shown to be linearly correlated to the GLAD ITO film thickness, indicating a homogeneous distribution of MP-11 across the film as well as homogeneous film porosity. Under saturating adsorption conditions, MP-11 film concentration as high as 60 mM was reached. This is equivalent to a stack of 110 monolayers of MP-11 per micrometer film thickness. This high MP-11 film loading combined with the excellent ITO film conductivity has allowed the simultaneous characterization of the heterogeneous one-electron transfer dynamics of the MP-11 Fe~(Ⅲ)/Fe~(Ⅱ) redox couple by cyclic voltammetry and cyclic voltabsorptometry, up to a scan rate of few volts per second with a satisfactory single-scan signal-to-noise ratio. The potency of the method to unravel complex redox coupled chemical reactions was also demonstrated with the catalytic reduction of oxygen by MP-11. In the presence of O_2, cross-correlation of electrochemical and spectroscopic data has allowed us to determine the key kinetics and thermodynamics parameters of the redox catalysis that otherwise could not be easily extracted using conventional protein film voltammetry. On the basis of numerical simulations of cyclic voltammograms and voltabsorptograms and within the framework of different plausible catalytic reaction schemes including appropriate approximations, it was shown possible to discriminate between different possible catalytic pathways and to identify the relevant catalytic cycle. In addition, from the best fits of simulations to the experimental voltammograms and voltabsorptograms, the partition coefficient of O_2 for the ITO film as well as the values of two kinetic rate constants could be extracted. It was finally concluded that the catalytic reduction of O_2 by MP-ll adsorbed within nanoporous ITO films occurs via a 2-electron mechanism with the formation of an intermediate Fe~(Ⅲ)-OOH adduct characterized by a decay rate of 11 s~(-1). The spectroelectroanalytical strategy presented here opens new opportunities for characterizing complex redox-coupled chemical reactions not only with redox proteins, but also with redox biomimetic systems and catalysts. It might also be of great interest for the development and optimization of new spectroelectrochemical sensors and biosensors, or eventually new photoelectrocatalytic systems or biofuel cells.
机译:通过掠角沉积(GLAD)制备了厚度范围为250 nm至2μm的氧化铟锡(ITO)纳米多孔膜,并用作高灵敏度透明3D电极,用于通过时间分辨光谱电化学定量研究反应性这种膜中吸附的微过氧化物酶11(MP-11)的数量。这些3D电极的电容电流密度以及MP-11的吸附量与GLAD ITO膜厚度呈线性相关,表明MP-11在整个膜上的分布均匀,并且膜的孔隙率均匀。在饱和吸附条件下,MP-11膜的浓度高达60 mM。这相当于每微米薄膜厚度堆叠110个单层MP-11。这种高MP-11薄膜负载量加上出色的ITO薄膜电导率,使得可以通过循环伏安法和循环伏安法同时表征MP-11 Fe〜(Ⅲ)/ Fe〜(Ⅱ)氧化还原对的非均一电子转移动力学伏波比色法,扫描速度高达每秒几伏,单扫描信噪比令人满意。用MP-11催化还原氧也证明了该方法解开复杂的氧化还原偶联化学反应的效力。在存在O_2的情况下,电化学数据和光谱数据的互相关性使我们能够确定氧化还原催化的关键动力学和热力学参数,而这些参数否则无法使用常规蛋白质膜伏安法轻松提取。在循环伏安图和伏安曲线图的数值模拟的基础上,并在包括合理近似在内的各种不同的可行催化反应方案的框架内,表明可以区分不同的可能催化途径并确定相关的催化循环。此外,从模拟的最佳拟合到实验的伏安图和伏安图,可以提取ITO膜的O_2分配系数以及两个动力学速率常数的值。最终得出结论,MP-ll吸附在纳米多孔ITO膜中对O_2的催化还原是通过2-电子机理发生的,形成了中间Fe〜(Ⅲ)-OOH加合物,其衰减速率为11 s〜( -1)。此处介绍的光谱电分析策略为表征复杂的氧化还原偶联化学反应(不仅与氧化还原蛋白,而且与氧化还原仿生系统和催化剂)提供了新的机会。对于新的光谱电化学传感器和生物传感器,或者最终是新的光电催化系统或生物燃料电池的开发和优化,它也可能引起极大的兴趣。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2012年第15期|p.6834-6845|共12页
  • 作者单位

    Laboratoire d'Electrochimie Moleculaire, UMR CNRS 7591, Universite Paris Diderot, Sorbonne Paris Cite, 15 rue Jean-Antoine de Baif, F-75205 Paris Cedex 13, France;

    Laboratoire d'Electrochimie Moleculaire, UMR CNRS 7591, Universite Paris Diderot, Sorbonne Paris Cite, 15 rue Jean-Antoine de Baif, F-75205 Paris Cedex 13, France;

    Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 2V4;

    Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 2V4,NRC National Institute for Nanotechnology, Edmonton, Alberta, Canada T6G 2M9;

    Laboratoire d'Electrochimie Moleculaire, UMR CNRS 7591, Universite Paris Diderot, Sorbonne Paris Cite, 15 rue Jean-Antoine de Baif, F-75205 Paris Cedex 13, France;

    Laboratoire d'Electrochimie Moleculaire, UMR CNRS 7591, Universite Paris Diderot, Sorbonne Paris Cite, 15 rue Jean-Antoine de Baif, F-75205 Paris Cedex 13, France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号