首页> 外文期刊>Journal of the American Chemical Society >Mechanistic Study on the Solution-Phase n-Doping of 1,3-Dimethyl- 2-aryl-2,3-dihydro-1 H-benzoimidazole Derivatives
【24h】

Mechanistic Study on the Solution-Phase n-Doping of 1,3-Dimethyl- 2-aryl-2,3-dihydro-1 H-benzoimidazole Derivatives

机译:1,3-二甲基-2-芳基-2,3-二氢-1 H-苯并咪唑衍生物的溶液相n掺杂机理研究

获取原文
获取原文并翻译 | 示例
       

摘要

The discovery of air-stable n-dopants for organic semiconductor materials has been hindered by the necessity of high-energy HOMOs and the air sensitivity of compounds that satisfy this requirement. One strategy for circumventing this problem is to utilize stable precursor molecules that form the active doping complex in situ during the doping process or in a postdeposition thermal- or photo-activation step. Some of us have reported on the use of 1H-benzimidazole (DMBI) and benzimidazolium (DMBI-I) salts as solution- and vacuum-processable n-type dopant precursors, respectively. It was initially suggested that DMBI dopants function as single-electron radical donors wherein the active doping species, the imidazoline radical, is generated in a postdeposition thermal annealing step. Herein we report the results of extensive mechanistic studies on DMBI-doped fullerenes, the results of which suggest a more complicated doping mechanism is operative. Specifically, a reaction between the dopant and host that begins with either hydride or hydrogen atom transfer and which ultimately leads to the formation of host radical anions is responsible for the doping effect. The results of this research will be useful for identifying applications of current organic n-doping technology and will drive the design of next-generation n-type dopants that are air stable and capable of doping low-electron-affinity host materials in organic devices.
机译:高能HOMO的必要性和满足此要求的化合物对空气的敏感性阻碍了有机半导体材料中空气稳定的n型掺杂剂的发现。解决该问题的一种策略是利用稳定的前驱体分子,该分子在掺杂过程中或沉积后的热激活或光激活步骤中就地形成活性掺杂复合物。我们中的一些人已经报道了分别使用1H-苯并咪唑(DMBI)和苯并咪唑鎓(DMBI-1)盐作为溶液和可真空加工的n型掺杂剂前体的用途。最初提出,DMBI掺杂剂起单电子自由基供体的作用,其中活性掺杂物质,咪唑啉自由基,是在沉积后的热退火步骤中产生的。本文中,我们报告了对DMBI掺杂的富勒烯进行广泛机理研究的结果,该结果表明,更复杂的掺杂机理是有效的。具体而言,掺杂剂与主体之间的反应以氢化物或氢原子转移开始,并最终导致形成主体自由基阴离子,这是造成掺杂效应的原因。这项研究的结果将有助于确定当前有机n掺杂技术的应用,并将推动空气稳定且能够掺杂有机器件中低电子亲和性主体材料的下一代n型掺杂剂的设计。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2013年第40期|15018-15025|共8页
  • 作者单位

    Departments of Chemical Engineering and Chemistry, Stanford University, 359 N-S Axis Stauffer Ⅲ, Stanford, California 94303, United States;

    Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States;

    Department of Electrical Engineering, Princeton University, B420 Engineering Quadrangle, Princeton, New Jersey 08544, United States;

    Department of Chemistry and Biochemistry, University of California-Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States;

    Departments of Chemical Engineering and Chemistry, Stanford University, 359 N-S Axis Stauffer Ⅲ, Stanford, California 94303, United States;

    Department of Chemistry and Biochemistry, University of California-Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States;

    Department of Electrical Engineering, Princeton University, B420 Engineering Quadrangle, Princeton, New Jersey 08544, United States;

    School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States;

    School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States;

    Departments of Chemical Engineering and Chemistry, Stanford University, 359 N-S Axis Stauffer Ⅲ, Stanford, California 94303, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:12:54

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号