首页> 外文期刊>Journal of the American Chemical Society >Chemical Analog-to-Digital Signal Conversion Based on Robust Threshold Chemistry and Its Evaluation in the Context of Microfluidics-Based Quantitative Assays
【24h】

Chemical Analog-to-Digital Signal Conversion Based on Robust Threshold Chemistry and Its Evaluation in the Context of Microfluidics-Based Quantitative Assays

机译:基于鲁棒阈值化学的化学模数信号转换及其在基于微流体的定量分析中的评估

获取原文
获取原文并翻译 | 示例
       

摘要

In this article, we describe a nonlinear threshold chemistry based on enzymatic inhibition and demonstrate how it can be coupled with microfluidics to convert a chemical concentration (analog input) into patterns of ON or OFF reaction outcomes (chemical digital readout). Quantification of small changes in concentration is needed in a number of assays, such as that for cystatin C, where a 1.5-fold increase in concentration may indicate the presence of acute kidney injury or progression of chronic kidney disease. We developed an analog-to-digital chemical signal conversion that gives visual readout and applied it to an assay for cystatin C as a model target. The threshold chemistry is based on enzymatic inhibition and gives sharper responses with tighter inhibition. The chemistry described here uses acetylcholinesterase (AChE) and produces an unambiguous color change when the input is above a predetermined threshold concentration. An input gives a pattern of ON/OFF responses when subjected to a monotonic sequence of threshold concentrations, revealing the input concentration at the point of transition from OFF to ON outcomes. We demonstrated that this threshold chemistry can detect a 1.30-fold increase in concentration at 22 ℃ and that it is robust to experimental fluctuations: it provided the same output despite changes in temperature (22-34 ℃) and readout time (10-fold range). We applied this threshold chemistry to diagnostics by coupling it with a traditional sandwich immunoassay for serum cystatin C. Because one quantitative measurement comprises several assays, each with its own threshold concentration, we used a microfluidic SlipChip device to process 12 assays in parallel, detecting a 1.5-fold increase (from 0.64 (49 nM) to 0.96 mg/L (74 nM)) of cystatin C in serum. We also demonstrated applicability to analysis of patient serum samples and the ability to image results using a cell phone camera. This work indicates that combining developments in nonlinear chemistries with microfluidics may lead to development of user-friendly diagnostic assays with simple readouts.
机译:在本文中,我们描述了一种基于酶抑制作用的非线性阈值化学方法,并演示了如何将其与微流控技术耦合以将化学浓度(模拟输入)转换为ON或OFF反应结果(化学数字读数)的模式。在许多试验中,如半胱氨酸蛋白酶抑制剂C,需要对浓度的微小变化进行定量,其中浓度增加1.5倍可能表明存在急性肾损伤或慢性肾脏疾病。我们开发了一种模数转换的化学信号转换,可以直观地读出信号,并将其应用于以胱抑素C作为模型靶标的测定。阈值化学基于酶促抑制作用,在更严格的抑制作用下给出更清晰的响应。当输入高于预定阈值浓度时,此处描述的化学方法会使用乙酰胆碱酯酶(AChE)并产生明确的颜色变化。当输入阈值浓度的单调序列时,输入会给出ON / OFF响应的模式,显示从OFF到ON结果过渡点的输入浓度。我们证明了该阈值化学方法可以检测到22℃时浓度增加1.30倍,并且对实验波动具有鲁棒性:尽管温度(22-34℃)和读数时间有所变化(10倍范围),但仍提供相同的输出)。我们将此阈值化学方法与传统的血清半胱氨酸蛋白酶抑制剂C夹心免疫分析法相结合,将其应用到诊断中。由于一项定量测量包括几种测定法,每种测定法都有其自己的阈值浓度,因此我们使用了微流控SlipChip装置来并行处理12种测定法,血清中的胱抑素C增加1.5倍(从0.64(49 nM)到0.96 mg / L(74 nM))。我们还证明了对患者血清样品分析的适用性以及使用手机摄像头成像结果的能力。这项工作表明,非线性化学与微流体技术的发展相结合可能会导致使用简单的读数开发出用户友好的诊断检测方法。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2013年第39期|14775-14783|共9页
  • 作者单位

    Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States;

    Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States;

    Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States SlipChip Corporation, 129 North Hill Avenue, Suite 107, Pasadena, California 91106, United States;

    Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States;

    Section of Nephrology, Department of Medicine, University of Chicago, 5841 South Maryland Avenue, MC 5100, Chicago, Illinois 60637, United States;

    Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:12:53

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号