首页> 外文期刊>Journal of the American Chemical Society >Multidimensional Magic Angle Spinning NMR Spectroscopy for Site-Resolved Measurement of Proton Chemical Shift Anisotropy in Biological Solids
【24h】

Multidimensional Magic Angle Spinning NMR Spectroscopy for Site-Resolved Measurement of Proton Chemical Shift Anisotropy in Biological Solids

机译:多维魔角旋转NMR光谱用于生物固体中质子化学位移各向异性的现场分辨测量

获取原文
获取原文并翻译 | 示例
       

摘要

The proton chemical shift (CS) tensor is a sensitive probe of structure and hydrogen bonding. Highly accurate quantum-chemical protocols exist for computation of ~1H magnetic shieldings in the various contexts, making proton chemical shifts potentially a powerful predictor of structural and electronic properties. However, ~1H CS tensors are not yet widely used in protein structure calculation due to scarcity of experimental data. While isotropic proton shifts can be readily measured in proteins even in the solid; state, determination of the ~1H chemical shift anisotropy (CSA) tensors remains challenging, particularly in molecules containing multiple proton sites. We present a method for site-resolved measurement of amide proton CSAs in fully protonated solids under magic angle spinning. The approach consists of three concomitant 3D experiments yielding spectra determined by either mainly ~1H CSA, mainly ~1H-~(15)N dipolar, or combined ~1H CSA and ~1H-~(15)N dipolar interactions. The anisotropic interactions are recoupled using RW-sequences of appropriate symmetry, such as R12_1~4, and ~(15)N/~(13)C isotropic CS dimensions are introduced via a short selective ~1H- ~(15)N cross-polarization step. Accurate ~1H chemical shift tensor parameters are extracted by simultaneous fit of the lineshapes recorded in the three spectra. An application of this method is presented for an 89-residue protein, U-~(13)C,~(15)N-CAP-Gly domain of dynactin. The CSA parameters determined from the triple fits correlate with the hydrogen-bonding distances, and the trends are in excellent agreement with the prior solution NMR results. This approach is generally suited for recording proton CSA parameters in various biological and organic systems, including protein assemblies and nucleic acids.
机译:质子化学位移(CS)张量是结构和氢键的敏感探针。在各种情况下,都存在用于计算〜1H磁屏蔽的高度精确的量子化学协议,从而使质子化学位移可能成为结构和电子性质的有力预测指标。然而,由于缺乏实验数据,〜1H CS张量尚未在蛋白质结构计算中广泛使用。各向同性质子位移可以很容易地在蛋白质中甚至在固体中测量;状态,〜1H化学位移各向异性(CSA)张量的确定仍然具有挑战性,特别是在包含多个质子位点的分子中。我们提出一种在魔角旋转下完全质子化固体中酰胺质子CSA的现场分辨测量方法。该方法由三个伴随的3D实验组成,这些实验产生的光谱主要由〜1H CSA,主要〜1H-〜(15)N偶极相互作用或〜1H CSA和〜1H-〜(15)N偶极相互作用共同决定。使用适当对称的RW序列(例如R12_1〜4)重新耦合各向异性相互作用,并通过短的选择性〜1H-〜(15)N交叉引入〜(15)N /〜(13)C各向同性CS尺寸极化步骤。通过同时拟合三个光谱中记录的线形来提取准确的〜1H化学位移张量参数。提出了该方法的应用,用于89个残基的蛋白,Dynactin的U-〜(13)C,〜(15)N-CAP-Gly结构域。由三重拟合确定的CSA参数与氢键距离相关,并且趋势与先前的溶液NMR结果非常吻合。该方法通常适用于在各种生物和有机系统(包括蛋白质装配体和核酸)中记录质子CSA参数。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2013年第4期|1358-1368|共11页
  • 作者单位

    Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States,Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States;

    Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States;

    Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States;

    Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States,Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States;

    Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:12:25

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号