首页> 外文期刊>Journal of the American Chemical Society >Indentation and Self-Healing Mechanisms of a Self-Assembled Monolayer-A Combined Experimental and Modeling Study
【24h】

Indentation and Self-Healing Mechanisms of a Self-Assembled Monolayer-A Combined Experimental and Modeling Study

机译:自组装单层的压痕与自愈机理-实验与模型研究相结合

获取原文
获取原文并翻译 | 示例
       

摘要

A combination of in situ vibrational sum-frequency generation (SFG) spectroscopy and molecular-dynamics (MD) simulations has allowed us to study the effects of indentation of self-assembled octadecylphosphonic acid (ODPA) monolayers on a-Al_2O_3(0001). Stress-induced changes in the vibrational signatures of C-H stretching vibrations in SFG spectra and the results of MD simulations provide clear evidence for an increase in gauche-defect density in the monolayer as a response to indentation. A stress-dependent analysis indicates that the defect density reaches saturation at approximately 155 MPa. After stress is released, the MD simulations show an almost instantaneous healing of pressure-induced defects in good agreement with experimental results. The lateral extent of the contact areas was studied with colocalized SFG spectroscopy and compared to theoretical predictions for pressure gradients from Hertzian contact theory. SFG experiments reveal a gradual increase in gauche-defect density with pressure before saturation close to the contact center. Furthermore, our MD simulations show a spatial anisotropy of pressure-induced effects within ODPA domains: molecules tilted in the direction of the pressure gradient increase in tilt angle while those on the opposite side form gawche-defects.
机译:原位振动总和频率生成(SFG)光谱和分子动力学(MD)模拟相结合,使我们能够研究自组装十八烷基膦酸(ODPA)单层压痕对a-Al_2O_3(0001)的影响。应力引起的SFG光谱中C-H拉伸振动的振动特征的变化以及MD模拟的结果提供了清楚的证据,表明单层的网纹缺陷密度随压痕的增加而增加。应力相关分析表明,缺陷密度在大约155 MPa时达到饱和。释放应力后,MD模拟显示压力诱导的缺陷几乎可以瞬间愈合,与实验结果非常吻合。使用共定位SFG光谱研究了接触区域的横向范围,并将其与赫兹接触理论中压力梯度的理论预测进行了比较。 SFG实验表明,在饱和状态下,接触点附近的水凝缺陷密度随压力逐渐增加。此外,我们的MD模拟显示了ODPA域内压力诱导效应的空间各向异性:沿压力梯度方向倾斜的分子的倾斜角增加,而相对侧的分子则形成了凝视缺陷。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2014年第30期|10718-10727|共10页
  • 作者单位

    Institute of Particle Technology (LFG), Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Cauerstrasse 4, 91058 Erlangen, Germany,Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Paul-Gordan-Strasse 6, 91052 Erlangen, Germany;

    Institute of Particle Technology (LFG), Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Cauerstrasse 4, 91058 Erlangen, Germany;

    Computer-Chemie-Centrum and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universitaet Erlangen-Nurnberg (FAU), Naegelsbachstrasse 25, 91052 Erlangen, Germany,Theoretical Chemistry, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Naegelsbachstrasse 25, 91052 Erlangen, Germany;

    Computer-Chemie-Centrum and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Naegelsbachstrasse 25, 91052 Erlangen, Germany,Department of Chemical and Environmental Engineering, University of Nottingham, University Park Nottingham NG7 2RD;

    Computer-Chemie-Centrum and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universitaet Erlangen-Nurnberg (FAU), Naegelsbachstrasse 25, 91052 Erlangen, Germany;

    Cluster of Excellence - Engineering of Advanced Material (EAM), Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Naegelsbachstrasse 49b, 91052 Erlangen, Germany,Computer-Chemie-Centrum and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Naegelsbachstrasse 25, 91052 Erlangen, Germany,Theoretical Chemistry, Friedrich-Alexander-Universitaet Erlangen-Nurnberg (FAU), Naegelsbachstrasse 25, 91052 Erlangen, Germany;

    Institute of Particle Technology (LFG), Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Cauerstrasse 4, 91058 Erlangen, Germany,Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Paul-Gordan-Strasse 6, 91052 Erlangen, Germany,Cluster of Excellence - Engineering of Advanced Material (EAM), Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Naegelsbachstrasse 49b, 91052 Erlangen, Germany;

    Institute of Particle Technology (LFG), Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Cauerstrasse 4, 91058 Erlangen, Germany,Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Paul-Gordan-Strasse 6, 91052 Erlangen, Germany,Cluster of Excellence - Engineering of Advanced Material (EAM), Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Naegelsbachstrasse 49b, 91052 Erlangen, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:11:07

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号