首页> 外文期刊>Journal of the American Chemical Society >In Situ Hybridization of Superparamagnetic Iron-Biomolecule Nanoparticles
【24h】

In Situ Hybridization of Superparamagnetic Iron-Biomolecule Nanoparticles

机译:超顺磁性铁-生物分子纳米粒子的原位杂交

获取原文
获取原文并翻译 | 示例
       

摘要

The increase in interest in the integration of organic-inorganic nanostructures in recent years has promoted the use of hybrid nanoparticles (HNPs) in medicine, energy conversion, and other applications. Conventional hybridization methods are, however, often long, complicated, and multistepped, and they involve biomolecules and discrete nanostructures as separate entities, all of which hinder the practical use of the resulting HNPs. Here, we present a novel, in situ approach to synthesizing size-specific HNPs using Fe-biomolecule complexes as the building blocks. We choose an anticancer peptide (p53p, MW 1.8 kDa) and an enzyme (GOx, MW 160 kDa) as model molecules to demonstrate the versatility of the method toward different types of molecules over a large size range. We show that electrostatic interaction for complex formation of metal hydroxide ion with the partially charged side of biomolecule in the solution is the key to hybridization of metal-biomolecule materials. Electrochemical deposition is then used to produce hybrid NPs from these complexes. These HNPs with controllable sizes ranging from 30 nm to 3.5 μm are found to exhibit superparamagnetic behavior, which is a big challenge for particles in this size regime. As an example of greatly improved properties and functionality of the new hybrid material, in vitro toxicity assessment of Fe-GOx HNPs shows no adverse effect, and the Fe-p53p HNPs are found to selectively bind to cancer cells. The superparamagnetic nature of these HNPs (superparamagnetic even above the size regime of 15-20 nm!), their biocompatibility, and the direct integration approach are fundamentally important to biomineralization and general synthesis strategy for bioinspired functional materials.
机译:近年来,对有机-无机纳米结构整合的兴趣不断增加,从而促进了杂化纳米颗粒(HNP)在医学,能量转换和其他应用中的使用。然而,常规的杂交方法通常是漫长的,复杂的和多步骤的,并且它们涉及生物分子和离散的纳米结构作为单独的实体,所有这些都阻碍了所得HNP的实际使用。在这里,我们介绍了一种新颖的原位合成方法,使用铁-生物分子复合物作为构建基块,可以合成大小特异性的HNP。我们选择一种抗癌肽(p53p,MW 1.8 kDa)和一种酶(GOx,MW 160 kDa)作为模型分子,以证明该方法在较大尺寸范围内对不同类型分子的多功能性。我们表明静电相互作用的金属氢氧化物离子与溶液中的生物分子的部分带电侧复杂形成是金属-生物分子材料杂交的关键。然后使用电化学沉积从这些复合物中产生杂化NP。这些尺寸可控制在30 nm至3.5μm范围内的HNPs表现出超顺磁性能,这对于这种尺寸范围的颗粒而言是一个巨大的挑战。作为这种新型杂化材料性能和功能大大改善的一个例子,Fe-GOx HNP的体外毒性评估未显示不利影响,并且发现Fe-p53p HNP有选择地与癌细胞结合。这些HNP的超顺磁性(甚至超过15-20 nm的超顺磁性!),它们的生物相容性和直接整合方法对生物矿化和生物启发功能材料的一般合成策略至关重要。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2014年第29期|10478-10485|共8页
  • 作者单位

    Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L3G1;

    Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L3G1;

    Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L3G1,Department of Hydro and Electro Metallurgy, Institute of Minerals and Materials Technology, Council of Scientific and Industrial Research, Bhubaneswar 751 013, Odisha, India;

    Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L3G1;

    Danny Thomas Research Center, St Jude Children's Research Hospital, Memphis, Tennessee 38103, United States;

    Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L3G1;

    Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L3G1;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:11:07

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号