首页> 外文期刊>Journal of the American Chemical Society >Importance of the Donor:Fullerene Intermolecular Arrangement for High-Efficiency Organic Photovoltaics
【24h】

Importance of the Donor:Fullerene Intermolecular Arrangement for High-Efficiency Organic Photovoltaics

机译:供体的重要性:高效有机光伏的富勒烯分子间排列

获取原文
获取原文并翻译 | 示例
       

摘要

The performance of organic photovoltaic (OPV) material systems are hypothesized to depend strongly on the intermolecular arrangements at the donor:fullerene interfaces. A review of some of the most efficient polymers utilized in polymer:fullerene PV devices, combined with an analysis of reported polymer donor materials wherein the same conjugated backbone was used with varying alkyl substituents, supports this hypothesis. Specifically, the literature shows that higher-performing donor-acceptor type polymers generally have acceptor moieties that are sterically accessible for interactions with the fullerene derivative, whereas the corresponding donor moieties tend to have branched alkyl substituents that sterically hinder interactions with the fullerene. To further explore the idea that the most beneficial polymenfullerene arrangement involves the fullerene docking with the acceptor moiety, a family of benzo[1,2-b:4,5-b']dithiophene-thieno[3,4-c]pyrrole-4,6-dione polymers (PBDTTPD derivatives) was synthesized and tested in a variety of PV device types with vastly different aggregation states of the polymer. In agreement with our hypothesis, the PBDTTPD derivative with a more sterically accessible acceptor moiety and a more sterically hindered donor moiety shows the highest performance in bulk-heterojunction, bilayer, and low-polymer concentration PV devices where fullerene derivatives serve as the electron-accepting materials. Furthermore, external quantum efficiency measurements of the charge-transfer state and solid-state two-dimensional (2D) ~(13)C{~1H} heteronuclear correlation (HETCOR) NMR analyses support that a specific polymenfullerene arrangement is present for the highest performing PBDTTPD derivative, in which the fullerene is in closer proximity to the acceptor moiety of the polymer. This work demonstrates that the polymer:fullerene arrangement and resulting intermolecular interactions may be key factors in determining the performance of OPV material systems.
机译:假设有机光伏(OPV)材料系统的性能在很大程度上取决于供体:富勒烯界面的分子间排列。对聚合物:富勒烯PV装置中使用的一些最有效的聚合物的综述,结合对报告的聚合物供体材料的分析(其中相同的共轭主链与不同的烷基取代基一起使用)的分析,支持了这一假设。具体而言,文献表明,较高性能的供体-受体型聚合物通常具有在空间上可与富勒烯衍生物相互作用的受体部分,而相应的供体部分倾向于具有空间上阻碍与富勒烯相互作用的支链烷基取代基。为了进一步探索最有益的聚富勒烯排列涉及富勒烯与受体部分对接的想法,该受体是苯并[1,2-b:4,5-b']二噻吩-噻吩并[3,4-c]吡咯-合成了4,6-二酮聚合物(PBDTTPD衍生物),并在各种PV器件类型中进行了测试,并且聚合物的聚集状态大不相同。与我们的假设相符,在主体异质结,双层和低聚合物浓度的PV器件中,富勒烯衍生物充当电子接受体,具有更易接近空间的受体部分和受阻更强的供体部分的PBDTTPD衍生物表现出最高的性能材料。此外,电荷转移态和固态二维(2D)〜(13)C {〜1H}杂核相关(HETCOR)NMR的外部量子效率测量结果表明,存在特定的聚富勒烯排列以实现最高性能PBDTTPD衍生物,其中富勒烯更接近聚合物的受体部分。这项工作表明,聚合物:富勒烯的排列方式和分子间的相互作用可能是决定OPV材料系统性能的关键因素。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2014年第27期|9608-9618|共11页
  • 作者单位

    Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States,Division of Physical Sciences & Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;

    Division of Physical Sciences & Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;

    Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States;

    Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States;

    Division of Physical Sciences & Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;

    Division of Physical Sciences & Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;

    Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States;

    Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States;

    Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States;

    Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States;

    Division of Physical Sciences & Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;

    Division of Physical Sciences & Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;

    Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:11:06

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号