首页> 外文期刊>Journal of the American Chemical Society >Supramolecular Packing Controls H_2 Photocatalysis in Chromophore Amphiphile Hydrogels
【24h】

Supramolecular Packing Controls H_2 Photocatalysis in Chromophore Amphiphile Hydrogels

机译:超分子堆积控制发色团两亲水凝胶中的H_2光催化。

获取原文
获取原文并翻译 | 示例
       

摘要

Light harvesting supramolecular assemblies are potentially useful structures as components of solar-to-fuel conversion materials. The development of these functional constructs requires an understanding of optimal packing modes for chromophores. We investigated here assembly in water and the photocatalytic function of perylene monoimide chromophore amphiphiles with different alkyl linker lengths separating their hydrophobic core and the hydrophilic carboxylate headgroup. We found that these chromophore amphiphiles (CAs) self-assemble into charged nanostructures of increasing aspect ratio as the linker length is increased. The addition of salt to screen the charged nanostructures induced the formation of hydrogels and led to internal crystallization within some of the nanostructures. For linker lengths up to seven methyienes, the CAs were found to pack into 2D crystalline unit cells within ribbon-shaped nanostructures, whereas the nine methylene CAs assembled into long nanofibers without crystalline molecular packing. At the same time, the different molecular packing arrangements after charge screening led to different absorbance spectra, despite the identical electronic properties of all PMI amphiphiles. While the crystalline CAs formed electronically coupled H-aggregates, only CAs with intermediate linker lengths showed evidence of high intermolecular orbital overlap. Photocatalytic hydrogen production using a nickel-based catalyst was observed in all hydrogels, with the highest turnovers observed for CA gels having intermediate linker lengths. We conclude that the improved photocatalytic performance of the hydrogels formed by supramolecular assemblies of the intermediate linker CA molecules likely arises from improved exciton splitting efficiencies due to their higher orbital overlap.
机译:集光超分子组件作为太阳能转化为燃料的材料的组件是潜在有用的结构。这些功能结构的发展需要了解生色团的最佳包装方式。我们在这里研究了在水中的组装以及不同烷基连接基长度的per单酰亚胺生色两亲物的光催化功能,分隔了它们的疏水核和亲水羧酸酯头基。我们发现这些生色团两亲物(CAs)自组装成带深宽比随着连接子长度增加而增加的带电纳米结构。添加盐以筛选带电的纳米结构会诱导水凝胶的形成,并导致某些纳米结构内部的内部结晶。对于长达七个甲基的连接基长度,发现CA堆积在带状纳米结构内的2D晶体晶胞中,而9个亚甲基CA组装成没有结晶分子堆积的长纳米纤维。同时,尽管所有PMI两亲物具有相同的电子特性,但电荷筛选后不同的分子堆积安排导致了不同的吸收光谱。虽然结晶CA形成电子耦合的H聚集体,但只有中间连接子长度的CA表现出高分子间轨道重叠的迹象。在所有水凝胶中均观察到使用镍基催化剂进行光催化制氢,其中具有中间连接基长度的CA凝胶的转化率最高。我们得出的结论是,由中间连接子CA分子的超分子组装形成的水凝胶的光催化性能提高,可能是由于其较高的轨道重叠导致了激子分裂效率的提高。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2015年第48期|15241-15246|共6页
  • 作者单位

    Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States,Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208, United States;

    Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States,Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208, United States;

    Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States,Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States;

    Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States;

    Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States;

    Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States,Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208, United States,Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States,Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States,Department of Medicine, Northwestern University, Chicago, Illinois 60611, United States,Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:09:50

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号