首页> 外文期刊>Journal of the American Chemical Society >Design Principles of DNA Enzyme-Based Walkers: Translocation Kinetics and Photoregulation
【24h】

Design Principles of DNA Enzyme-Based Walkers: Translocation Kinetics and Photoregulation

机译:基于DNA酶的步行者的设计原理:易位动力学和光调节。

获取原文
获取原文并翻译 | 示例
       

摘要

Dynamic DNA enzyme-based walkers complete their stepwise movements along the prescribed track through a series of reactions, including hybridization, enzymatic cleavage, and strand displacement; however, their overall translocation kinetics is not well understood. Here, we perform mechanistic studies to elucidate several key parameters that govern the kinetics and processivity of DNA enzyme-based walkers. These parameters include DNA enzyme core type and structure, upper and lower recognition arm lengths, and divalent metal cation species and concentration. A theoretical model is developed within the framework of single-molecule kinetics to describe overall translocation kinetics as well as each reaction step. A better understanding of kinetics and design parameters enables us to demonstrate a walker movement near 5 μm at an average speed of ~1 nm s~(-1). We also show that the translocation kinetics of DNA walkers can be effectively controlled by external light stimuli using photoisomerizable azobenzene moieties. A 2-fold increase in the cleavage reaction is observed when the hairpin stems of enzyme catalytic cores are open under UV irradiation. This study provides general design guidelines to construct highly processive, autonomous DNA walker systems and to regulate their translocation kinetics, which would facilitate the development of functional DNA walkers.
机译:基于动态DNA酶的助步器通过一系列反应(包括杂交,酶促裂解和链置换)完成沿指定轨道的逐步移动。然而,他们的整体易位动力学还没有被很好地理解。在这里,我们进行机理研究以阐明控制基于DNA酶的助步器动力学和持续性的几个关键参数。这些参数包括DNA酶的核心类型和结构,上下识别臂的长度以及二价金属阳离子的种类和浓度。在单分子动力学的框架内开发了一个理论模型,用于描述整体易位动力学以及每个反应步骤。更好地了解动力学和设计参数,使我们能够证明沃克运动在5μm附近,平均速度约为-1 nm s〜(-1)。我们还表明,DNA沃克的易位动力学可以通过使用光致异构化的偶氮苯部分的外部光刺激来有效控制。当酶催化核心的发夹茎在紫外线照射下打开时,裂解反应增加了2倍。这项研究提供了一般的设计指南,以构建高度加工性的,自主的DNA沃克系统,并调节其易位动力学,这将有助于功能性DNA沃克的发展。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2015年第29期|9429-9437|共9页
  • 作者单位

    School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States;

    School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States;

    School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States;

    School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States;

    Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States;

    Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States;

    School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:09:43

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号