首页> 外文期刊>Journal of the American Chemical Society >Site-Specific Substitutional Boron Doping of Semiconducting Armchair Graphene Nanoribbons
【24h】

Site-Specific Substitutional Boron Doping of Semiconducting Armchair Graphene Nanoribbons

机译:半导体扶手椅石墨烯纳米带的特定位置取代硼掺杂

获取原文
获取原文并翻译 | 示例
       

摘要

A fundamental requirement for the development of advanced electronic device architectures based on graphene nanoribbon (GNR) technology is the ability to modulate the band structure and charge carrier concentration by substituting specific carbon atoms in the hexagonal graphene lattice with p- or n-type dopant heteroatoms. Here we report the atomically precise introduction of group Ⅲ dopant atoms into bottom-up fabricated semiconducting armchair GNRs (AGNRs). Trigonal-planar B atoms along the backbone of the GNR share an empty p-orbital with the extended π-band for dopant functionality. Scanning tunneling microscopy (STM) topography reveals a characteristic modulation of the local density of states along the backbone of the GNR that is superimposable with the expected position and concentration of dopant B atoms. First-principles calculations support the experimental findings and provide additional insight into the band structure of B-doped 7-AGNRs.
机译:开发基于石墨烯纳米带(GNR)技术的高级电子设备体系结构的基本要求是能够通过用p型或n型掺杂杂原子取代六角形石墨烯晶格中的特定碳原子来调节能带结构和电荷载流子浓度的能力。 。在这里,我们报告了原子精确地将Ⅲ族掺杂原子引入自底向上制造的半导体扶手椅GNR(AGNR)的过程。沿着GNR主干的三角平面B原子与一个扩展的π带共享一个空的p轨道,以实现掺杂剂功能。扫描隧道显微镜(STM)形貌揭示了沿GNR主干的状态局部密度的特征调制,该调制与掺杂剂B原子的预期位置和浓度可叠加。第一性原理计算支持实验结果,并提供了对B掺杂7-AGNRs的能带结构的进一步了解。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2015年第28期|8872-8875|共4页
  • 作者单位

    Department of Chemistry University of California Berkeley, Berkeley, California 94720, United States;

    Department of Chemistry University of California Berkeley, Berkeley, California 94720, United States;

    Department of Physics, University of California Berkeley, Berkeley, California 94720, United States;

    Department of Physics, University of California Berkeley, Berkeley, California 94720, United States;

    Department of Physics, University of California Berkeley, Berkeley, California 94720, United States;

    Department of Physics, University of California Berkeley, Berkeley, California 94720, United States;

    Department of Physics, University of California Berkeley, Berkeley, California 94720, United States;

    Department of Physics, University of California Berkeley, Berkeley, California 94720, United States,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States;

    Department of Physics, University of California Berkeley, Berkeley, California 94720, United States,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States,Kavli Energy NanoSciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States;

    Department of Chemistry University of California Berkeley, Berkeley, California 94720, United States,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States,Kavli Energy NanoSciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:09:42

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号