首页> 外文期刊>Journal of the American Chemical Society >Cooperative Electrostatic Interactions Drive Functional Evolution in the Alkaline Phosphatase Superfamily
【24h】

Cooperative Electrostatic Interactions Drive Functional Evolution in the Alkaline Phosphatase Superfamily

机译:协同静电相互作用驱动碱性磷酸酶超家族的功能进化。

获取原文
获取原文并翻译 | 示例
       

摘要

It is becoming widely accepted that catalytic promiscuity, i.e., the ability of a single enzyme to catalyze the turnover of multiple, chemically distinct substrates, plays a key role in the evolution of new enzyme functions. In this context, the members of the alkaline phosphatase superfamily have been extensively studied as model systems in order to understand the phenomenon of enzyme multifunctionality. In the present work, we model the selectivity of two multiply promiscuous members of this superfamily, namely the phosphonate monoester hydrolases from Burkholderia caryophylli and Rhizobium leguminosarum. We have performed extensive simulations of the enzymatic reaction of both wild-type enzymes and several experimentally characterized mutants. Our computational models are in agreement with key experimental observables, such as the observed activities of the wild-type enzymes, qualitative interpretations of experimental pH-rate profiles, and activity trends among several active site mutants. In all cases the substrates of interest bind to the enzyme in similar conformations, with largely unperturbed transition states from their corresponding analogues in aqueous solution. Examination of transition-state geometries and the contribution of individual residues to the calculated activation barriers suggest that the broad promiscuity of these enzymes arises from cooperative electrostatic interactions in the active site, allowing each enzyme to adapt to the electrostatic needs of different substrates. By comparing the structural and electrostatic features of several alkaline phosphatases, we suggest that this phenomenon is a generalized feature driving selectivity and promiscuity within this superfamily and can be in turn used for artificial enzyme design.
机译:催化混杂,即单一酶催化多种化学上不同的底物的周转能力,在新酶功能的进化中起关键作用,这一点已被广泛接受。在这种情况下,已广泛研究了碱性磷酸酶超家族的成员作为模型系统,以了解酶的多功能性现象。在目前的工作中,我们模拟了这个超家族的两个杂交成员的选择性,即来自Burkholderia caryophylli和Rhegobium leguminosarum的膦酸酯单酯水解酶。我们已经对野生型酶和几个实验表征的突变体的酶促反应进行了广泛的模拟。我们的计算模型与关键的实验观察结果相符,例如观察到的野生型酶的活性,对实验pH速率分布的定性解释以及几个活性位点突变体之间的活性趋势。在所有情况下,目的底物都以相似的构象与酶结合,其水溶液中的相应类似物的过渡态基本不受干扰。检查过渡态的几何形状以及单个残基对计算出的激活势垒的贡献表明,这些酶的广泛混杂源于活性位点的协同静电相互作用,使每种酶都能适应不同底物的静电需求。通过比较几种碱性磷酸酶的结构和静电特征,我们认为这种现象是驱动该超家族内选择性和滥交性的普遍特征,可以反过来用于人工酶设计。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2015年第28期|9061-9076|共16页
  • 作者单位

    Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, SE-751 24, Uppsala, Sweden;

    Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, SE-751 24, Uppsala, Sweden;

    Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, SE-751 24, Uppsala, Sweden;

    Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, SE-751 24, Uppsala, Sweden;

    Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, SE-751 24, Uppsala, Sweden;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:09:47

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号