首页> 外文期刊>Journal of the American Chemical Society >Growth of Horizontal Semiconducting SWNT Arrays with Density Higher than 100 tubes/μm using Ethanol/Methane Chemical Vapor Deposition
【24h】

Growth of Horizontal Semiconducting SWNT Arrays with Density Higher than 100 tubes/μm using Ethanol/Methane Chemical Vapor Deposition

机译:使用乙醇/甲烷化学气相沉积法生长密度高于100管/μm的水平半导体SWNT阵列

获取原文
获取原文并翻译 | 示例
       

摘要

Horizontally aligned semiconducting single-walled carbon nanotube (s-SWNT) arrays with a certain density are highly desirable for future electronic devices. However, obtaining s-SWNT arrays with simultaneously high purity and high density is extremely challenging. We report herein a rational approach, using ethanol/methane chemical vapor deposition, to grow SWNT arrays with a s-SWNT ratio over 91% and a density higher than 100 tubes/μm. In this approach, at a certain temperature, ethanol was fully thermally decomposed to feed carbon atoms for Trojan-Mo catalysts growing high density SWNT arrays, while the incomplete pyrolysis of methane provided appropriate active H radicals with the help of catalytic sapphire surface to inhibit metallic SWNT (m-SWNT) growth. The synergistic effect of ethanol/methane mixtures resulted in enriched semiconducting SWNTs and no obvious decrease in nanotube density due to their milder reactivity and higher controllability at suitable growth conditions. This work represents a step forward in large-area synthesis of high density s-SWNT arrays on substrates and demonstrates potential applications in scalable carbon nanotube electronics.
机译:具有一定密度的水平排列的半导体单壁碳纳米管(s-SWNT)阵列是未来电子设备的高度需求。然而,获得同时具有高纯度和高密度的s-SWNT阵列是极具挑战性的。我们在这里报告了一种合理的方法,使用乙醇/甲烷化学气相沉积法,以生长具有s-SWNT比率超过91%且密度高于100管/μm的SWNT阵列。在这种方法下,在一定温度下,乙醇被完全热分解以生成生长高密度SWNT阵列的Trojan-Mo催化剂所需的碳原子,而甲烷的不完全热解借助蓝宝石的催化表面提供了合适的活性H自由基以抑制金属SWNT(m-SWNT)增长。乙醇/甲烷混合物的协同作用导致富集的半导体单壁碳纳米管,并且由于在适当的生长条件下它们的反应性较温和且可控性较高,因此纳米管密度没有明显降低。这项工作代表了在基板上高密度s-SWNT阵列的大面积合成方​​面迈出的一步,并展示了可伸缩碳纳米管电子学的潜在应用。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2016年第21期|6727-6730|共4页
  • 作者单位

    Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China,Division of Advanced Nanomaterials, Suzhou Institute of Nanotech and Nanobionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China,University of Chinese Academy of Sciences, Beijing 100049, P. R. China;

    Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China;

    Division of Advanced Nanomaterials, Suzhou Institute of Nanotech and Nanobionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China;

    Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:08:47

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号