首页> 外文期刊>Journal of the American Chemical Society >Temporal Control of Aptamer Biosensors Using Covalent Self-Caging To Shift Equilibrium
【24h】

Temporal Control of Aptamer Biosensors Using Covalent Self-Caging To Shift Equilibrium

机译:使用共价自定序转移平衡的适体生物传感器的时间控制。

获取原文
获取原文并翻译 | 示例
       

摘要

Aptamer-based sensors provide a versatile and effective platform for the detection of chemical and biological targets. These sensors have been optimized to function in multiple formats, however, a remaining limitation is the inability to achieve temporal control over their sensing function. To overcome this challenge, we took inspiration from nature's ability to temporally control the activity of enzymes and protein receptors through covalent self-caging. We applied this strategy to structure-switching aptamer sensors through the installation of a cleavable linker between the two DNA fragments that comprise the sensor. Analogous to self-caged proteins, installation of this linker shifts the equilibrium of the aptamer sensor to disfavor target binding. However, activity can be restored in a time-resolved manner by cleavage of the linker. To demonstrate this principle, we chose a photocleavable linker and found that installation of the linker eliminates target binding, even at high target concentrations. However, upon irradiation with 365 nm light, sensor activity is restored with response kinetics that mirror those of the linker cleavage reaction. A key benefit of our approach is generality, which is demonstrated by grafting the photodeavable linker onto a different aptamer sensor and showing that an analogous level of temporal control can be achieved for sensing of the new target molecule. These results demonstrate that nature's self-caging approach can be effectively applied to non-natural receptors to provide precise temporal control over function. We envision that this will be of especially high utility for deploying aptamer sensors in biological environments.
机译:基于适体的传感器为检测化学和生物目标提供了一种通用且有效的平台。这些传感器已经过优化,可以多种格式工作,但是,仍然存在的局限性是无法实现对其感应功能的时间控制。为了克服这一挑战,我们从自然界中通过共价自我笼罩来暂时控制酶和蛋白质受体活性的能力中获得了启发。我们通过在构成传感器的两个DNA片段之间安装可裂解的接头,将这种策略应用于结构转换适体传感器。类似于自笼蛋白,该接头的安装改变了适体传感器的平衡,从而不利于靶标结合。但是,可以通过切割接头以时间分辨的方式恢复活性。为了证明这一原理,我们选择了光可裂解的接头,发现即使在高靶标浓度下,安装接头也可以消除靶标结合。但是,在用365 nm的光照射后,传感器的活性得以恢复,其响应动力学与连接子裂解反应的动力学相同。我们方法的主要优点是通用性,这是通过将可光解构的接头嫁接到不同的适体传感器上来证明的,并且表明可以实现类似水平的时间控制,以感测新的靶分子。这些结果表明自然界的自我笼养方法可以有效地应用于非自然受体,以提供对功能的精确时间控制。我们设想这对于在生物环境中部署适体传感器将具有特别高的实用性。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2016年第20期|6328-6331|共4页
  • 作者单位

    Department of Chemistry and the Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah 84112, United States;

    Department of Chemistry and the Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah 84112, United States;

    Department of Chemistry and the Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah 84112, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:08:45

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号