...
首页> 外文期刊>Journal of the American Chemical Society >Loss and Reformation of Ruthenium Alkylidene: Connecting Olefin Metathesis, Catalyst Deactivation, Regeneration, and Isomerization
【24h】

Loss and Reformation of Ruthenium Alkylidene: Connecting Olefin Metathesis, Catalyst Deactivation, Regeneration, and Isomerization

机译:钌亚烷基的损失和重整:连接烯烃复分解,催化剂失活,再生和异构化

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Ruthenium-based olefin metathesis catalysts are used in laboratory-scale organic synthesis across chemistry, largely thanks to their ease of handling and functional group tolerance. In spite of this robustness, these catalysts readily decompose, via little-understood pathways, to species that promote double-bond migration (isomerization) in both the 1- alkene reagents and the internal-alkene products. We have studied, using density functional theory (DFT), the reactivity of the Hoveyda-Grubbs second-generation catalyst 2 with allylbenzene, and discovered a facile new decomposition pathway. In this pathway, the alkylidene ligand is lost, via ring expansion of the metallacyclobutane intermediate, leading to the spin-triplet 12-electron complex (SIMes)RuCl_2 (~3R21, SIMes = 1,3-bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene). DFT calculations predict ~3R21 to be a very active alkene isomerization initiator, either operating as a catalyst itself, via a η~3-allyl mechanism, or, after spin inversion to give R21 and formation of a cyclometalated Ru-hydride complex, via a hydride mechanism. The calculations also suggest that the alkylidene- free ruthenium complexes may regenerate alkylidene via dinuclear ruthenium activation of alkene. The predicted capacity to initiate isomerization is confirmed in catalytic tests using p-cymene-stabilized R21 (5), which promotes isomerization in particular under conditions favoring dissociation of p-cymene and disfavoring formation of aggregates of 5. The same qualitative trends in the relative metathesis and isomerization selectivities are observed in identical tests of 2, indicating that 5 and 2 share the same catalytic cycles for both metathesis and isomerization, consistent with the calculated reaction network covering metathesis, alkylidene loss, isomerization, and alkylidene regeneration.
机译:钌基烯烃复分解催化剂广泛用于整个化学领域的实验室规模的有机合成中,这主要归功于它们的易处理性和官能团耐受性。尽管具有这种鲁棒性,这些催化剂仍通过很少理解的途径容易地分解为促进1-烯烃试剂和内部烯烃产物中的双键迁移(异构化)的物质。我们使用密度泛函理论(DFT)研究了Hoveyda-Grubbs第二代催化剂2与烯丙基苯的反应性,并发现了一种简便的新分解途径。在此途径中,亚烷基配体通过金属环丁烷中间体的扩环而丢失,从而导致自旋三联体12电子络合物(SIMes)RuCl_2(〜3R21,SIMes = 1,3-bis(2,4,6- (三甲基苯基)-4,5-二氢咪唑-2-亚烷基)。 DFT计算预测〜3R21是非常活泼的烯烃异构化引发剂,它可以通过η〜3-烯丙基机制本身作为催化剂,或者在自旋转化为R21并通过环氧化形成Ru金属后形成环金属化的Ru-氢化物络合物。氢化机理。计算还表明,不含亚烷基的钌络合物可通过烯烃的双核钌活化来再生亚烷基。预测的引发异构化的能力已通过使用对雄蕊稳定的R21(5)进行催化测试得到了证实,R21尤其在有利于对雄蕊离解和不利于5的聚集体形成的条件下促进了异构化。相对的定性趋势在2的相同测试中观察到复分解和异构化的选择性,这表明5和2在复分解和异构化方面共享相同的催化循环,这与计算的涵盖复分解,亚烷基损失,异构化和亚烷基再生的反应网络一致。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2017年第46期|16609-16619|共11页
  • 作者单位

    Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany;

    Department of Chemistry, University of Bergen, Allegaten 41, N-5007 Bergen, Norway;

    Department of Chemistry, University of Bergen, Allegaten 41, N-5007 Bergen, Norway;

    Department of Chemistry, University of Bergen, Allegaten 41, N-5007 Bergen, Norway;

    Department of Chemistry, University of Bergen, Allegaten 41, N-5007 Bergen, Norway;

    Department of Chemistry, University of Bergen, Allegaten 41, N-5007 Bergen, Norway;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号