...
首页> 外文期刊>Journal of the American Chemical Society >Tuning Product Selectivity for Aqueous CO_2 Reduction with a Mn(bipyridine)-pyrene Catalyst Immobilized on a Carbon Nanotube Electrode
【24h】

Tuning Product Selectivity for Aqueous CO_2 Reduction with a Mn(bipyridine)-pyrene Catalyst Immobilized on a Carbon Nanotube Electrode

机译:固定在碳纳米管电极上的Mn(联吡啶)-re催化剂对CO 2还原水溶液的调节产物选择性

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The development of high-performance electro-catalytic systems for the controlled reduction of CO_2 to value-added chemicals is a key goal in emerging renewable energy technologies. The lack of selective and scalable catalysts in aqueous solution currently hampers the implementation of such a process. Here, the assembly of a [MnBr(2,2'-bipyridine)(CO)_3] complex anchored to a carbon nanotube electrode via a pyrene unit is reported. Immobilization of the molecular catalyst allows electrocatalytic reduction of CO_2 under fully aqueous conditions with a catalytic onset overpotential of η = 360 mV, and controlled potential electrolysis generated more than 1000 turnovers at η = 550 mV. The product selectivity can be tuned by alteration of the catalyst loading on the nanotube surface. CO was observed as the main product at high catalyst loadings, whereas formate was the dominant CO_2 reduction product at low catalyst loadings. Using UV—vis and surface-sensitive IR spectroelectrochemical techniques, two different intermediates were identified as responsible for the change in selectivity of the heterogenized Mn catalyst. The formation of a dimeric Mn° species at higher surface loading was shown to preferentially lead to CO formation, whereas at lower surface loading the electrochemical generation of a monomelic Mn-hydride is suggested to greatly enhance the production of formate. These results emphasize the advantages of integrating molecular catalysts onto electrode surfaces for enhancing catalytic activity while allowing excellent control and a deeper understanding of the catalytic mechanisms.
机译:为控制将CO_2还原为增值化学品而开发的高性能电催化系统是新兴可再生能源技术的主要目标。水溶液中缺乏选择性和可扩展的催化剂目前阻碍了这种方法的实施。在此,报道了通过a单元锚定到碳纳米管电极的[MnBr(2,2'-联吡啶)(CO)_3]配合物的组装。分子催化剂的固定化允许在完全水相条件下以电催化方式还原CO_2,催化起始电势为η= 360 mV,受控电势电解在η= 550 mV时产生了1000多个转换。产物选择性可以通过改变纳米管表面上的催化剂负载量来调节。在高催化剂负载量下观察到CO是主要产物,而在低催化剂负载量下甲酸是主要的CO_2还原产物。使用UV-vis和表面敏感的IR光谱电化学技术,鉴定出两种不同的中间体可导致异相Mn催化剂选择性的变化。已表明在较高的表面负荷下形成二聚Mn°物种会优先导致CO的形成,而在较低的表面负荷下,建议锰氢化物的电化学生成可大大提高甲酸盐的产生。这些结果强调了将分子催化剂整合到电极表面上以增强催化活性,同时允许出色的控制和对催化机理的更深入理解的优势。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2017年第41期|14425-14435|共11页
  • 作者单位

    Christian Doppler Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom;

    Christian Doppler Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom;

    Christian Doppler Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom;

    Christian Doppler Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom;

    Max Volmer Laboratorium fur Biophysikalische Chemie, Sekretariat PC 14, Institut fuer Chemie, Technische Universitat Berlin, Straβe des 17. Juni 135, 10623 Berlin, Germany;

    Christian Doppler Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号