首页> 外文期刊>Journal of the American Chemical Society >The Role of Dopant Ions on Charge Injection and Transport in Electrochemically Doped Quantum Dot Films
【24h】

The Role of Dopant Ions on Charge Injection and Transport in Electrochemically Doped Quantum Dot Films

机译:掺杂离子在电化学掺杂量子点薄膜中对电荷注入和输运的作用

获取原文
获取原文并翻译 | 示例
       

摘要

Control over the charge density is very important for implementation of colloidal semiconductor nanocrystals into various optoelectronic applications. A promising approach to dope nanocrystal assemblies is charge injection by electrochemistry, in which the charge compensating electrolyte ions can be regarded as external dopant ions. To gain insight into the doping mechanism and the role of the external dopant ions, we investigate charge injection in ZnO nanocrystal assemblies for a large series of charge compensating electrolyte ions with spectroelectrochemical and electrochemical transistor measurements. We show that charge injection is limited by the diffusion of cations in the nanocrystal films as their diffusion coefficient are found to be ∼7 orders of magnitude lower than those of electrons. We further show that the rate of charge injection depends strongly on the cation size and cation concentration. Strikingly, the onset of electron injection varies up to 0.4 V, depending on the size of the electrolyte cation. For the small ions Li~(+) and Na~(+) the onset is at significantly less negative potentials. For larger ions (K~(+), quaternary ammonium ions) the onset is always at the same, more negative potential, suggesting that intercalation may take place for Li~(+) and Na~(+). Finally, we show that the nature of the charge compensating cation does not affect the source-drain electronic conductivity and mobility, indicating that shallow donor levels from intercalating ions fully hybridize with the quantum confined energy levels and that the reorganization energy due to intercalating ions does not strongly affect electron transport in these nanocrystal assemblies.
机译:电荷密度的控制对于将胶体半导体纳米晶体实施到各种光电应用中非常重要。掺杂纳米晶体组件的一种有前途的方法是通过电化学注入电荷,其中可以将电荷补偿电解质离子视为外部掺杂剂离子。为了深入了解掺杂机理和外部掺杂剂离子的作用,我们通过光谱电化学和电化学晶体管测量研究了一系列电荷补偿电解质离子在ZnO纳米晶体组件中的电荷注入。我们发现电荷注入受到阳离子在纳米晶体膜中的扩散的限制,因为发现它们的扩散系数比电子的扩散系数低约7个数量级。我们进一步表明,电荷注入的速率在很大程度上取决于阳离子的大小和阳离子的浓度。引人注目的是,取决于电解质阳离子的大小,电子注入的起始电压变化高达0.4V。对于小离子Li〜(+)和Na〜(+),其开始时的负电势要小得多。对于较大的离子(K〜(+),季铵离子),其始发始终处于相同的负电势,这表明Li〜(+)和Na〜(+)可能发生嵌入。最后,我们表明电荷补偿阳离子的性质不会影响源漏电子传导性和迁移率,表明嵌入离子的浅施主能级与量子约束能级充分杂化,而嵌入离子引起的重组能确实不会强烈影响这些纳米晶体组件中的电子传输。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2018年第21期|6582-6590|共9页
  • 作者单位

    Chemical Engineering, Optoelectronic Materials, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands;

    Chemical Engineering, Optoelectronic Materials, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands;

    Chemical Engineering, Optoelectronic Materials, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands;

    Chemical Engineering, Optoelectronic Materials, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands,Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands;

    Chemical Engineering, Optoelectronic Materials, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:07:24

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号