首页> 外文期刊>Journal of the American Chemical Society >Synthetic Control over Quantum Well Width Distribution and Carrier Migration in Low-Dimensional Perovskite Photovoltaics
【24h】

Synthetic Control over Quantum Well Width Distribution and Carrier Migration in Low-Dimensional Perovskite Photovoltaics

机译:低维钙钛矿光伏中量子阱宽度分布和载流子迁移的综合控制

获取原文
获取原文并翻译 | 示例
       

摘要

Metal halide perovskites have achieved photovoltaic efficiencies exceeding 22%, but their widespread use is hindered by their instability in the presence of water and oxygen. To bolster stability, researchers have developed low-dimensional perovskites wherein bulky organic ligands terminate the perovskite lattice, forming quantum wells (QWs) that are protected by the organic layers. In thin films, the width of these QWs exhibits a distribution that results in a spread of bandgaps in the material arising due to varying degrees of quantum confinement across the population. Means to achieve refined control over this QW width distribution, and to examine and understand its influence on photovoltaic performance, are therefore of intense interest. Here we show that moving to the ligand allylammonium enables a narrower distribution of QW widths, creating a flattened energy landscape that leads to ×1.4 and ×1.9 longer diffusion lengths for electrons and holes, respectively. We attribute this to reduced ultrafast shallow hole trapping that originates from the most strongly confined QWs. We observe an increased PCE of 14.4% for allylammonium-based perovskite QW photovoltaics, compared to 11–12% PCEs obtained for analogous devices using phenethylammonium and butylammonium ligands. We then optimize the devices using mixed-cation strategies, achieving 16.5% PCE for allylammonium devices. The devices retain 90% of their initial PCEs after >650 h when stored under ambient atmospheric conditions.
机译:金属卤化物钙钛矿的光伏效率超过22%,但由于在水和氧气存在下的不稳定性而阻碍了其广泛使用。为了增强稳定性,研究人员开发了低维钙钛矿,其中庞大的有机配体终止了钙钛矿晶格,形成了受有机层保护的量子阱(QW)。在薄膜中,这些量子阱的宽度呈现出一种分布,该分布导致整个材料中由于量子约束程度不同而引起的带隙在材料中的扩散。因此,对这种QW宽度分布进行精确控制,检查和了解其对光伏性能的影响的方法引起了人们的极大兴趣。在这里,我们表明,转移至配体烯丙基铵可使QW宽度的分布更窄,从而产生平坦的能量态势,从而分别导致电子和空穴的扩散长度分别为×1.4和×1.9。我们将此归因于源于最严格约束的QW的超快浅孔陷井。与基于苯乙铵和丁基铵配体的类似器件获得的PCE相比,基于烯丙基铵的钙钛矿QW光伏产品的PCE增加了14.4%。然后,我们使用混合阳离子策略优化设备,从而使烯丙基铵设备的PCE达到16.5%。在环境大气条件下存储> 650 h后,这些设备将保留其90%的初始PCE。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2018年第8期|2890-2896|共7页
  • 作者单位

    Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada, M5S 3G4,The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Road, Toronto, Ontario, Canada, M5S 3G4;

    The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Road, Toronto, Ontario, Canada, M5S 3G4;

    The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Road, Toronto, Ontario, Canada, M5S 3G4;

    The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Road, Toronto, Ontario, Canada, M5S 3G4;

    Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada, M5S 3G4,Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada, M5S 3M2;

    The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Road, Toronto, Ontario, Canada, M5S 3G4;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:07:17

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号