首页> 外文期刊>Journal of the American Chemical Society >Singlet Fission Involves an Interplay between Energetic Driving Force and Electronic Coupling in Perylenediimide Films
【24h】

Singlet Fission Involves an Interplay between Energetic Driving Force and Electronic Coupling in Perylenediimide Films

机译:单线态裂变涉及Per二酰亚胺薄膜中能量驱动力和电子耦合之间的相互作用。

获取原文
获取原文并翻译 | 示例
       

摘要

Due to its ability to offset thermalization losses in photoharvesting systems, singlet fission has become a topic of research interest. During singlet fission, a high energy spin-singlet state in an organic semiconductor divides its energy to form two lower energy spin-triplet excitations on neighboring chromophores. While key insights into mechanisms leading to singlet fission have been gained recently, developing photostable compounds that undergo quantitative singlet fission remains a key challenge. In this report, we explore triplet exciton production via singlet fission in films of perylenediimides, a class of compounds with a long history of use as industrial dyes and pigments due to their photostability. As singlet fission necessitates electron transfer between neighboring molecules, its rate and yield depend sensitively on their local arrangement. By adding different functional groups at their imide positions, we control how perylenediimides pack in the solid state. We find inducing a long axis displacement of ∼3 Å between neighboring perylenediimides gives a maximal triplet production yield of 178% with a fission rate of ∼245 ps despite the presence of an activation barrier of ∼190 meV. These findings disagree with Marcus theory predictions for the optimal perylenediimide geometry for singlet fission, but do agree with Redfield theory calculations that allow singlet fission to occur via a charge transfer-mediated superexchange mechanism. Unfortunately, triplets produced by singlet fission are found to decay over tens of nanoseconds. Our results highlight that singlet fission materials must be designed to not only produce triplet excitons but to also facilitate their extraction.
机译:由于其能够抵消光捕获系统中的热损失,单重态裂变已成为研究热点。在单线态裂变期间,有机半导体中的高能自旋单态会分散其能量,从而在相邻的生色团上形成两个较低能的自旋三重态激发。虽然最近已获得了导致单线态裂变的机理的关键见识,但开发可经历定量单线态裂变的光稳定化合物仍然是关键挑战。在本报告中,我们探讨了per二酰亚胺薄膜中的单线裂变产生三重态激子的过程,per二酰亚胺是一类由于其光稳定性而长期用作工业染料和颜料的化合物。由于单线态裂变需要相邻分子之间的电子转移,其速率和产率敏感地取决于其局部排列。通过在酰亚胺位置添加不同的官能团,我们可以控制per二酰亚胺在固态中的堆积方式。我们发现,尽管存在约190 meV的激活势垒,但在相邻的di二酰亚胺之间产生约3Å的长轴位移,可产生最大的三重态产量,其裂变速率为245 ps,裂变速率为17.8%。这些发现与Marcus理论对单峰裂变最佳per二酰亚胺几何构型的预测不一致,但与Redfield理论计算一致,后者允许通过电荷转移介导的超交换机制发生单峰裂变。不幸的是,发现由单重态裂变产生的三胞胎会衰减数十纳秒。我们的结果突出表明,单重态裂变材料不仅必须设计成能产生三重态激子,而且还必须促进它们的提取。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2018年第2期|814-826|共13页
  • 作者单位

    Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States;

    Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States;

    National Renewable Energy Laboratory, Golden, Colorado 80401-3305, United States;

    Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States;

    National Renewable Energy Laboratory, Golden, Colorado 80401-3305, United States;

    Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:07:16

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号