首页> 外文期刊>Journal of the American Chemical Society >Orbitally Matched Edge-Doping in Graphene Nanoribbons
【24h】

Orbitally Matched Edge-Doping in Graphene Nanoribbons

机译:石墨烯纳米带中的轨道匹配边缘掺杂

获取原文
获取原文并翻译 | 示例
       

摘要

A series of trigonal planar N-, O-, and S-dopant atoms incorporated along the convex protrusion lining the edges of bottom-up synthesized chevron graphene nanoribbons (cGNRs) induce a characteristic shift in the energy of conduction and valence band edge states along with a significant reduction of the band gap of up to 0.3 eV per dopant atom per monomer. A combination of scanning probe spectroscopy and density functional theory calculations reveals that the direction and the magnitude of charge transfer between the dopant atoms and the cGNR backbone are dominated by inductive effects and follow the expected trend in electronegativity. The introduction of heteroatom dopants with trigonal planar geometry ensures an efficient overlap of a p-orbital lone-pair centered on the dopant atom with the extended π-system of the cGNR backbone effectively extending the conjugation length. Our work demonstrates a widely tunable method for band gap engineering of graphene nanostructures for advanced electronic applications.
机译:沿着自底向上合成的V形石墨烯纳米带(cGNR)的边缘衬里的凸出部分结合的一系列三角形平面N-,O-和S-掺杂剂原子沿其导能和价带边缘态的能量引起特征性位移具有显着的带隙减小,每个单体的每个掺杂原子最多可达到0.3 eV。扫描探针光谱法和密度泛函理论计算的结合表明,掺杂原子与cGNR主链之间电荷转移的方向和大小受感应效应支配,并遵循电负性的预期趋势。具有三角形平面几何形状的杂原子掺杂剂的引入确保了以掺杂剂原子为中心的p轨道孤对与cGNR主链的扩展π系统的有效重叠,有效地延长了共轭长度。我们的工作展示了一种用于高级电子应用的石墨烯纳米结构的带隙工程设计的广泛可调方法。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2018年第2期|807-813|共7页
  • 作者单位

    Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States;

    Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States;

    Department of Physics, University of California Berkeley, Berkeley, California 94720, United States,Department of Physics, Pohang University of Science and Technology, Pohang, Kyungbuk 37673, Korea;

    Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States;

    Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States;

    Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States;

    Department of Physics, Pohang University of Science and Technology, Pohang, Kyungbuk 37673, Korea;

    Department of Physics, University of California Berkeley, Berkeley, California 94720, United States,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States;

    Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States,Kavli Energy NanoSciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:07:16

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号