...
首页> 外文期刊>Journal of symbolic computation >Formalization of the arithmetization of Euclidean plane geometry and applications
【24h】

Formalization of the arithmetization of Euclidean plane geometry and applications

机译:欧氏平面几何算术的形式化及其应用

获取原文
获取原文并翻译 | 示例
           

摘要

This paper describes the formalization of the arithmetization of Euclidean plane geometry in the Coq proof assistant. As a basis for this work, Tarski's system of geometry was chosen for its well-known metamathematical properties. This work completes our formalization of the two-dimensional results contained in part one of the book by Schwabhauser, Szmielew and Tarski Metamathematische Methoden in der Geometrie. We defined the arithmetic operations geometrically and proved that they verify the properties of an ordered field. Then, we introduced Cartesian coordinates, and provided characterizations of the main geometric predicates. In order to prove the characterization of the segment congruence relation, we provided a synthetic formal proof of two crucial theorems in geometry, namely the intercept and Pythagoras' theorems. To obtain the characterizations of the geometric predicates, we adopted an original approach based on bootstrapping: we used an algebraic prover to obtain new characterizations of the predicates based on already proven ones. The arithmetization of geometry paves the way for the use of algebraic automated deduction methods in synthetic geometry. Indeed, without a "back-translation" from algebra to geometry, algebraic methods only prove theorems about polynomials and not geometric statements. However, thanks to the arithmetization of geometry, the proven statements correspond to theorems of any model of Tarski's Euclidean geometry axioms. To illustrate the concrete use of this formalization, we derived from Tarski's system of geometry a formal proof of the nine-point circle theorem using the Grobner basis method. Moreover, we solve a challenge proposed by Beeson: we prove that, given two points, an equilateral triangle based on these two points can be constructed in Euclidean Hilbert planes. Finally, we derive the axioms for another automated deduction method: the area method. (C) 2018 Published by Elsevier Ltd.
机译:本文介绍了Coq证明助手中欧几里得平面几何的算术形式化。作为这项工作的基础,Tarski的几何系统因其著名的超数学性质而被选中。这项工作完成了我们对Schwabhauser,Szmielew和Tarski Metamathematische Methoden在der Geometrie中所著的第一部分中所包含的二维结果的形式化。我们以几何方式定义了算术运算,并证明了它们验证了有序字段的性质。然后,我们介绍了笛卡尔坐标,并提供了主要几何谓词的表征。为了证明分段同余关系的刻画,我们提供了几何中两个关键定理的综合形式证明,即截距定理和毕达哥拉斯定理。为了获得几何谓词的表征,我们采用了基于自举的原始方法:我们使用了代数证明者来基于已证明的谓词获得谓词的新表征。几何图形的算术化为在合成几何图形中使用代数自动演绎方法铺平了道路。实际上,如果没有从代数到几何的“反向平移”,代数方法只能证明关于多项式的定理,而不是关于几何陈述的定理。但是,由于几何的算术化,已证明的陈述对应于Tarski欧几里得几何公理的任何模型的定理。为了说明这种形式化的具体用法,我们从塔斯基的几何系统中得出了使用格罗布纳基础法的九点圆定理的形式证明。此外,我们解决了Beeson提出的挑战:我们证明,给定两个点,可以在欧几里得希尔伯特平面上构造基于这两个点的等边三角形。最后,我们推导另一种自动推导方法的公理:面积法。 (C)2018由Elsevier Ltd.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号