首页> 外文期刊>Journal of symbolic computation >Algorithmic determination of q-power series for q-holonomic functions
【24h】

Algorithmic determination of q-power series for q-holonomic functions

机译:q-完整函数的q-幂级数的算法确定

获取原文
获取原文并翻译 | 示例
       

摘要

In Koepf (1992) it was shown how for a given holonomic function a representation as a formal power series of hypergeomet-ric type can be determined algorithmically. This algorithm - that we call FPS algorithm (Formal Power Series) - combines three steps to obtain the desired representation. The authors implemented this algorithm in the computer algebra system Maple as ' convert/FormalPowerSeries' which is always successful if the input function is a linear combination of hypergeometric power series. In this paper we give a q-analogue of the FPS algorithm for q-holonomic functions and extend this algorithm in such a way that it identifies and returns linear combinations of q-hypergeometric series. The algorithm is a combination of mainly three subalgo-rithms, which make use of existing algorithms from Abramov et al. (1998), Boing and Koepf (1999) and Abramov et al. (2000). We introduce two different polynomial bases for the representation of q-series and realize that they are sufficient to obtain all well-known q-hypergeometric representations of the classical q-orthogonal polynomials of the q-Hahn class Koekoek and Swart-touw (1998). Then we develop an algorithm which converts a q-holonomic recurrence equation of a q-hypergeometric series with nontrivial expansion point into the corresponding q-holonomic recurrence equation for the coefficients. Furthermore, we show how the inverse problem can be handled. The latter algorithm is used to detect q-holonomic recurrences for some types of generalized q-hypergeometric functions. We implemented all presented algorithms (and many others) in Maple and make them available as Maple package qFPS which will be described briefly. Additionally, in some examples we show how qFPS can be applied to deduce special function identities in a simple way based on techniques used in Zeilberger (1990).
机译:在Koepf(1992)中表明,对于给定的完整功能,如何通过算法确定作为超几何形类型的形式幂级数的表示形式。该算法-我们称为FPS算法(形式幂级数)-结合了三个步骤以获得所需的表示形式。作者在计算机代数系统Maple中将该算法实现为'convert / FormalPowerSeries',如果输入函数是超几何幂级数的线性组合,则该算法总是成功的。在本文中,我们给出了用于q完整函数的FPS算法的q模拟,并对该算法进行了扩展,使其能够识别并返回q超几何级数的线性组合。该算法主要是三个子算法的组合,它们利用了Abramov等人的现有算法。 (1998),Boing和Koepf(1999)和Abramov等人。 (2000)。我们引入两个不同的多项式基础来表示q系列,并认识到它们足以获得q-Hahn类Koekoek和Swart-touw(1998)的经典q正交多项式的所有众所周知的q超几何表示。 。然后,我们开发了一种算法,该算法将具有非平凡展开点的q超几何序列的q完整递归方程转换为相应的系数的q完整递归方程。此外,我们展示了如何解决逆问题。后一种算法用于检测某些类型的广义q超几何函数的q完整递归。我们在Maple中实现了所有提出的算法(以及许多其他算法),并将其作为Maple软件包qFPS提供,将对此进行简要介绍。另外,在一些示例中,我们展示了如何基于Zeilberger(1990)中使用的技术,以简单的方式将qFPS应用于推断特殊功能身份。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号