首页> 外文期刊>Journal of surveying engineering >Application of a Back-Propagation Artificial Neural Network to Regional Grid-Based Geoid Model Generation Using GPS and Leveling Data
【24h】

Application of a Back-Propagation Artificial Neural Network to Regional Grid-Based Geoid Model Generation Using GPS and Leveling Data

机译:反向传播人工神经网络在基于GPS和水准数据的区域网格大地水准面模型生成中的应用

获取原文
获取原文并翻译 | 示例
       

摘要

The height difference between the ellipsoidal height h and the orthometric height H is called undulation N. The key issue in transforming the global positioning system (GPS)-derived ellipsoidal height to the orthometric height is to determine the undulation value accurately. If the undulation N for a point whose position is determined by a GPS receiver can be estimated in the field, then the GPS-derived three-dimensional geocentric coordinate in WGS-84 can be transformed into a local coordinate system and the orthometric height in real-time. In this paper, algorithms of applying a back-propagation artificial neural network (BP ANN) to develop a regional grid-based geoid model using GPS data (e.g., ellipsoidal height) and geodetic leveling data (e.g., orthometric height) are proposed. In brief, the proposed algorithms include the following steps: (1) establish the functional relationship between the point's plane coordinates and its undulation using the BP ANN according to the measured GPS data and leveling data; (2) develop a regional grid-based geoid model using the imaginary grid plane coordinates with a fixed grid interval and the trained BP ANN; (3) develop an undulation interpolation algorithm to estimate a specific point's undulation using the generated grid-based geoid model; and (4) estimate the point's undulation in the field and transform the GPS ellipsoidal height into the orthometric height in real-time. Three data sets from the Taiwan region are used to test the proposed algorithms. The test results show that the undulation interpolation estimation accuracy using the generated grid-based geoid is in the order of 2-4 cm. The proposed algorithms and the detailed test results are presented in this paper.
机译:椭球高h与正高H之间的高度差称为起伏N。将全球定位系统(GPS)衍生的椭球高转换为正高的关键问题是准确确定起伏值。如果可以在野外估计其位置由GPS接收器确定的点的起伏N,则可以将WGS-84中GPS衍生的三维地心坐标转换为局部坐标系,并以实测高度为单位-时间。在本文中,提出了使用反向传播人工神经网络(BP ANN)来开发基于GPS数据(例如椭球高)和大地平整数据(例如正高)的区域网格大地水准面模型的算法。简而言之,所提出的算法包括以下步骤:(1)根据测得的GPS数据和水准数据,使用BP神经网络建立点的平面坐标与其起伏之间的函数关系; (2)使用具有固定网格间隔的虚构网格平面坐标和经过训练的BP神经网络,开发基于区域网格的大地水准面模型; (3)使用生成的基于网格的大地水准面模型开发起伏插值算法以估计特定点的起伏; (4)估计点在现场的起伏,并将GPS椭球高实时转换为正高。来自台湾地区的三个数据集用于测试所提出的算法。测试结果表明,使用生成的基于网格的大地水准面的波动插值估计精度约为2-4 cm。本文提出了所提出的算法和详细的测试结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号