...
首页> 外文期刊>Journal of structural geology >Origin of fault domains and fault-domain boundaries (transfer zones and accommodation zones) in extensional provinces: Result of random nucleation and self-organized fault growth
【24h】

Origin of fault domains and fault-domain boundaries (transfer zones and accommodation zones) in extensional provinces: Result of random nucleation and self-organized fault growth

机译:延伸省的断层域和断层边界(转移区和适应区)的起源:随机成核和自组织断层增长的结果

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In many extensional provinces, large normal faults dip in the same direction forming fault domains. Features variously named transfer faults, transfer zones, and accommodation zones (hereafter non-genetically referred to as fault-domain boundaries) separate adjacent fault domains. Experimental modeling of distributed extension provides insights on the origin, geometry, and evolution of these fault domains and fault-domain boundaries. In our scaled models, a homogeneous layer of wet clay or dry sand overlies a latex sheet that is stretched orthogonally or obliquely between two rigid sheets. Fault domains and fault-domain boundaries develop in all models in both map view and cross-section. The number, size, and arrangement of fault domains as well as the number and orientation of fault-domain boundaries are variable, even for models with identical boundary conditions. The fault-domain boundaries in our models differ profoundly from those in many published conceptual models of transfer/ accommodation zones. In our models, fault-domain boundaries are broad zones of deformation (not discrete strike-slip or oblique-slip faults), their orientations are not systematically related to the extension direction, and they can form spontaneously without any prescribed pre-existing zones of weakness. We propose that fault domains develop because early-formed faults perturb the stress field, causing new nearby faults to dip in the same direction (self-organized growth). As extension continues, faults from adjacent fault domains propagate toward each another. Because opposite-dipping faults interfere with one another in the zone of overlap, the faults stop propagating. In this case, the geometry of the domain boundaries depends on the spatial arrangement of the earliest formed faults, a result of the random distribution of the largest flaws at which the faults nucleate.
机译:在许多延伸省,大的正断层向同一方向倾斜,形成断层域。具有各种命名的传输故障,传输区和适应区(以下统称故障域边界)的功能将相邻的故障域分开。分布式扩展的实验建模可提供有关这些故障域和故障域边界的起源,几何形状和演化的见解。在我们的比例模型中,均匀的湿粘土或干砂层覆盖在两个刚性片之间正交或倾斜拉伸的乳胶片上。在地图视图和横截面中的所有模型中都出现了故障域和故障域边界。甚至对于具有相同边界条件的模型,故障域的数量,大小和排列以及故障域边界的数量和方向也是可变的。我们模型中的断层域边界与许多已发布的转移/适应区概念模型中的断层域边界有很大不同。在我们的模型中,断层域边界是较宽的变形区域(不是离散的走滑断层或斜滑断层),其方向与延伸方向没有系统地相关,并且它们可以自发形成,而没有任何规定的预先存在的区域弱点。我们建议开发断层域,因为早期形成的断层扰动了应力场,导致附近的新断层向同一方向倾斜(自组织增长)。随着扩展的继续,相邻故障域中的故障会彼此传播。由于相距相对的断层在重叠区域相互干扰,因此断层停止传播。在这种情况下,畴边界的几何形状取决于最早形成的断层的空间排列,这是断层成核的最大缺陷随机分布的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号