首页> 外文期刊>Journal of structural geology >Factors that control the development of fault-bend versus fault-propagation folds: Insights from mechanical models based on the discrete element method (DEM)
【24h】

Factors that control the development of fault-bend versus fault-propagation folds: Insights from mechanical models based on the discrete element method (DEM)

机译:控制断层弯曲和断层传播褶皱发展的因素:基于离散元方法(DEM)的机械模型的见解

获取原文
获取原文并翻译 | 示例
       

摘要

We investigate the role and relative importance of a range of geometric and mechanical factors in the development of contractional fault-related folds, with an emphasis on defining the factors that promote the development of fault-bend and fault-propagation folds. We construct a series of discrete-element mechanical models in order to test the effects of fault dip, bulk material strength, mechanical layer anisotropy and spacing, sedimentation rate, and boundary conditions on the style of fault-related fold that develops. We find that fault-bend folding is most favored at low fault ramp dips, with thinly-spaced mechanical layers, and strong layer strength contrasts. In contrast, conditions that inhibit slip on a potential upper detachment surface, such as increased friction and a fixed foreland boundary, encourage the development of fault-propagation folds. Additionally, steeper fault dips, more widely-spaced mechanical layers, and decreased layer strength contrast favor the increased localization of shear during the growth of structures. This leads to structures that deform by a mixture of fault-bend and fault-propagation folding styles. Observations of the distortional strains that develop in the model provide insight into the relationship between the different deformation mechanisms, such as flexural slip and localized shear, which accommodate structural growth and ultimately determine fault-related folding style. Thus, these models provide a context for understanding how rock and fault properties influence whether structures evolve as fault-bend or fault-propagation folds, or as combinations of these end members. We apply these insights to interpret two natural examples from the offshore Niger Delta outer fold-and-thrust belt that exhibit changes in structural style through time as a result of changes in fault properties and syntectonic sedimentation.
机译:我们研究了一系列几何和机械因素在与收缩断层有关的褶皱发展中的作用和相对重要性,重点是确定了促进断层弯曲和断层传播褶皱发展的因素。为了测试断层倾角,块体材料强度,机械层各向异性和间距,沉降速率以及边界条件对断层相关褶皱样式的影响,我们构建了一系列离散元素力学模型。我们发现断层弯折最适合于低断层倾斜倾角,较薄的机械层和较强的层间强度对比。相反,抑制潜在的上分离面上滑动的条件(例如增加的摩擦力和固定的前陆边界)会促进断层传播褶皱的发展。此外,陡峭的断层倾角,较宽的机械层间距和降低的层强度对比值有利于结构生长过程中剪切力的增加。这导致结构由于断裂弯曲和断裂传播折叠样式的混合而变形。通过观察模型中产生的变形应变,可以洞悉不同变形机制之间的关系,例如挠曲滑移和局部剪切,它们可以适应结构的增长并最终确定与断层有关的褶皱样式。因此,这些模型为理解岩石和断层性质如何影响结构是作为断层弯曲或断层传播褶皱,还是这些端部组合的演化提供了背景。我们利用这些见解来解释尼日尔三角洲近海外褶皱-冲断带的两个自然实例,这些实例由于断层性质和构造沉积的变化而随时间表现出结构样式的变化。

著录项

  • 来源
    《Journal of structural geology》 |2014年第ptaa期|121-141|共21页
  • 作者单位

    Department of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, MA 02138, USA,Chevron Energy Technology Company, 1500 Louisiana Street, Houston, TX 77002, USA;

    Department of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, MA 02138, USA,ExxonMobil Upstream Research Company, 3120 Buffalo Speedway, Houston, TX 77098, USA;

    Department of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, MA 02138, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Fault-related folding; Discrete element modeling; Fold mechanics and kinematics; Structural styles;

    机译:故障相关的折叠;离散元素建模;折叠力学和运动学;结构样式;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号