首页> 外文期刊>Journal of structural geology >Microstructure and fabric development in ice: Lessons learned from in situ experiments and implications for understanding rock evolution
【24h】

Microstructure and fabric development in ice: Lessons learned from in situ experiments and implications for understanding rock evolution

机译:冰中的微观结构和织物开发:从原位实验中学到的经验教训以及对理解岩石演化的启示

获取原文
获取原文并翻译 | 示例
       

摘要

In this contribution we present a review of the evolution of microstructures and fabric in ice. Based on the review we show the potential use of ice as an analogue for rocks by considering selected examples that can be related to quartz-rich rocks. Advances in our understanding of the plasticity of ice have come from experimental investigations that clearly show that plastic deformation of polycrystalline ice is initially produced by basal slip. Interaction of dislocations play an essential role for dynamic recrystal-lization processes involving grain nucleation and grain-boundary migration during the steady-state flow of ice. To support this review we describe deformation in polycrystalline 'standard' water-ice and natural-ice samples, summarize other experiments involving bulk samples and use in situ plane-strain deformation experiments to illustrate the link between microstructure and fabric evolution, rheolog-ical response and dominant processes. Most terrestrial ice masses deform at low shear stresses by grain-size-insensitive creep with a stress exponent (n≤3). However, from experimental observations it is shown that the distribution of plastic activity producing the microstructure and fabric is initially dominated by grain-boundary migration during hardening (primary creep), followed by dynamic recrystallization during transient creep (secondary creep) involving new grain nucleation, with further cycles of grain growth and nucleation resulting in near steady-state creep (tertiary creep). The micro-structural transitions and inferred mechanism changes are a function of local and bulk variations in strain energy (i.e. dislocation densities) with surface grain-boundary energy being secondary, except in the case of static annealing. As there is a clear correspondence between the rheology of ice and the high-temperature deformation dislocation creep regime of polycrystalline quartz, we suggest that lessons learnt from ice deformation can be used to interpret polycrystalline quartz deformation. Different to quartz, ice allows experimental investigations at close to natural strain rate, and through in-situ experiments offers the opportunity to study the dynamic link between microstructural development, rheology and the identification of the dominant processes.
机译:在这项贡献中,我们介绍了冰中微结构和织物的演变。在此综述的基础上,我们通过考虑与富含石英的岩石有关的示例,表明了将冰作为岩石类似物的潜在用途。实验研究清楚地表明,多晶冰的塑性变形最初是由基底滑移引起的,这使我们对冰的可塑性有了进一步的了解。位错的相互作用对于在稳态冰流中涉及晶粒成核和晶界迁移的动态重结晶过程起着至关重要的作用。为了支持此综述,我们描述了多晶“标准”水冰和天然冰样品中的变形,总结了涉及散装样品的其他实验,并使用原位平面应变变形实验来说明微观结构与织物演变,流变学响应之间的联系。和主导过程。大多数陆地冰块在低切应力下会因晶粒尺寸不敏感的蠕变而变形,应力指数为n≤3。但是,从实验观察中可以看出,产生微观结构和织物的塑性活动的分布最初主要是在硬化(初次蠕变)过程中晶界迁移,然后是瞬态蠕变(二次蠕变)过程中涉及新晶粒成核的动态再结晶,随着晶粒生长和成核的进一步循环,导致接近稳态蠕变(三次蠕变)。微观结构转变和推断的机理变化是应变能(即位错密度)的局部和整体变化的函数,表面晶界能为次要的,静态退火除外。由于冰的流变性和多晶石英的高温形变位错蠕变状态之间存在明显的对应关系,因此我们建议从冰形变形中学到的经验教训可用于解释多晶石英的形变。与石英不同,冰可以在接近自然应变率的条件下进行实验研究,并且通过原位实验提供了研究微观结构发展,流变学和确定主要过程之间动态联系的机会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号