首页> 外文期刊>Journal of structural geology >Exploring the influence of loading geometry on the plastic flow properties of geological materials: Results from combined torsion plus axial compression tests on calcite rocks
【24h】

Exploring the influence of loading geometry on the plastic flow properties of geological materials: Results from combined torsion plus axial compression tests on calcite rocks

机译:探索载荷几何形状对地质材料塑性流动特性的影响:方解石岩石的组合扭力和轴向压缩试验的结果

获取原文
获取原文并翻译 | 示例
       

摘要

For technical reasons, virtually all plastic deformation experiments on geological materials have been performed in either pure shear or simple shear. These special case loading geometries are rather restrictive for those seeking insight into how microstructure evolves under the more general loading geometries that occur during natural deformation. Moreover, they are insufficient to establish how plastic flow properties might vary with the 3rd invariant of the deviatoric stress tensor (J(3)) which describes the stress configuration, and so applications that use those flow properties (e.g. glaciological and geodynamical modelling) may be correspondingly compromised. We describe an inexpensive and relatively straightforward modification to the widely used Paterson rock deformation apparatus that allows torsion experiments to be performed under simultaneously applied axial loads. We illustrate the performance of this modification with the results of combined stress experiments performed on Carrara marble and Solnhofen limestone at 500 degrees-600 degrees C and confining pressures of 300 MPa. The flow stresses are best described by the Drucker yield function which includes J(3)-dependence. However, that J3 dependence is small. Hence for these initially approximately isotropic calcite rocks, flow stresses are adequately described by the J(3)-independent von Mises yield criterion that is widely used in deformation modelling. Loading geometry does, however, have a profound influence on the type and rate of development of crystallographic preferred orientation, and hence of mechanical anisotropy. The apparatus modification extends the range of loading geometries that can be used to investigate microstructural evolution, as well as providing greater scope for determining the shape of the yield surface in plastically anisotropic materials. (C) 2016 The Authors. Published by Elsevier Ltd.
机译:由于技术原因,几乎所有对地质材料的塑性变形实验都是在纯剪切或简单剪切条件下进行的。这些特殊情况的加载几何形状对于那些寻求洞察微观结构在自然变形过程中发生的更一般的加载几何形状下如何演化的人来说是相当有限的。此外,它们不足以确定塑性流动特性如何随偏应力张量的第三不变性(J(3))变化,该变量描述了应力配置,因此使用这些流动特性的应用(例如,冰川和地球动力学模拟)可能相应地受到损害。我们描述了对广泛使用的Paterson岩石变形设备的廉价且相对简单的修改,该设备允许在同时施加轴向载荷的情况下执行扭转实验。我们用卡拉拉大理石和Solnhofen石灰石在500摄氏度至600摄氏度,围压300 MPa的条件下进行联合应力实验的结果来说明这种改进的性能。流动应力最好由包含J(3)依赖性的Drucker屈服函数来描述。但是,J3依赖性很小。因此,对于这些最初近似各向同性的方解石岩石,流动应力可以通过变形建模中广泛使用的与J(3)独立的冯·米塞斯屈服准则进行充分描述。然而,加载几何形状确实对晶体学优选取向的类型和发展速率具有深远的影响,因此对机械各向异性也有深远的影响。对设备的修改扩大了可用于研究微观结构演变的加载几何形状的范围,并为确定塑性各向异性材料中的屈服面形状提供了更大的范围。 (C)2016作者。由Elsevier Ltd.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号