...
首页> 外文期刊>Journal of structural engineering >Self-Centering Hybrid GFRP-Steel Reinforced Concrete Beams for Blast Resilience
【24h】

Self-Centering Hybrid GFRP-Steel Reinforced Concrete Beams for Blast Resilience

机译:用于爆破弹性的自定心混合GFRP钢筋混凝土梁

获取原文
获取原文并翻译 | 示例
           

摘要

Despite having a high strength-to-weight ratio and being chemically inert, fiber-reinforced polymer (FRP) reinforcing bars are not currently used in reinforced concrete protective design due to their brittle nature and lack of ductility. This paper presents research on the innovative use of blended mixtures of FRP and steel rebar to activate self-centering behavior to return blast-loaded elements to their original position after the inertial loads are removed. Self-centering blast-resilient members promise reductions in residual damage, repair cost, and facility downtime after a terrorist bomb attack or accidental explosion. Large-scale reinforced concrete beams with different combinations of steel and glass FRP (GFRP) rebar were designed, constructed, and tested under progressively increasing blast loads generated by the Virginia Tech Shock Tube Research Facility. The results demonstrated that beams with hybrid reinforcing experienced reduced overall residual damage in comparison with similar conventionally reinforced concrete members. Increasing the self-centering ratio (SC) of beams, defined as the ratio of the restoring moment provided by the FRP to the resisting moment provided by energy dissipating steel rebar, increased the blast self-centering tendencies of the hybrid beams. Additionally, if the GFRP rebar ruptured during the blast, the presence of steel prevented a brittle failure mechanism and provided additional energy dissipation and redundancy. To encourage the use of hybrid FRP-steel reinforcement in blast-resistant construction, a series of protective design recommendations are made. Furthermore, a new response limit based on a blast self-centering index (BSI) is proposed to explicitly account for the residual damage state in the protective design process. (C) 2021 American Society of Civil Engineers.
机译:尽管具有高强度重量比并进行化学惰性,但由于其脆性性和缺乏延性,目前纤维增强聚合物(FRP)加强杆目前尤其不用于钢筋混凝土防护设计。本文介绍了对FRP和钢筋钢筋混纺混合物的创新使用,以激活自定心行为,以在惯性载荷被移除后将爆破装载的元件返回其原始位置。在恐怖主义炸弹攻击或意外爆炸后,自定心爆炸弹性成员承诺减少剩余损坏,维修成本和设施停机时间。设计,建造,制造,建造,建造,采用不同组合的大型钢筋混凝土梁(GFRP)螺纹钢(GFRP)螺纹钢,并在逐步增加由弗吉尼亚科技震动管研究机构产生的爆破载荷。结果表明,与类似的传统钢筋混凝土构件相比,具有杂化增强的梁经历了整体剩余损伤。增加光束的自定心比(SC),定义为FRP提供的恢复时刻与能量消散钢钢筋提供的抗抵抗力的比率,增加了混合梁的爆破自定心趋势。另外,如果GFRP钢筋在爆炸过程中破裂,则钢的存在阻止了脆性失效机制并提供了额外的能量耗散和冗余。为鼓励在抗爆炸结构中使用混合玻璃钢加固,采用一系列保护性设计建议。此外,提出了一种基于BLAST自定向指数(BSI)的新响应限制,以明确地解释保护性设计过程中的残余损伤状态。 (c)2021年美国土木工程师协会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号