首页> 外文期刊>The Journal of Strain Analysis for Engineering Design >A state-of-the-art review of micron-scale spatially resolved residual stress analysis by FIB-DIC ring-core milling and other techniques
【24h】

A state-of-the-art review of micron-scale spatially resolved residual stress analysis by FIB-DIC ring-core milling and other techniques

机译:FIB-DIC环芯铣削和其他技术对微米级空间分辨残余应力分析的最新研究进展

获取原文
获取原文并翻译 | 示例
       

摘要

Quantification of residual stress gradients can provide great improvements in understanding the complex interactions between microstructure, mechanical state, mode(s) of failure and structural integrity. Highly focused local probe non-destructive techniques such as X-ray diffraction, electron diffraction or Raman spectroscopy have an established track record in determining spatial variations in the relative changes in residual stress with respect to a reference state for many structural materials. However, the interpretation of these measurements in terms of absolute stress values requires a strain-free sample often difficult to obtain due to the influence of chemistry, microstructure or processing route. With the increasing availability of focused ion beam instruments, a new approach has been developed which is known as the micro-scale ring-core focused ion beam-digital image correlation technique. This technique is becoming the principal tool for quantifying absolute in-plane residual stresses. It can be applied to a broad range of materials: crystalline and amorphous metallic alloys and ceramics, polymers, composites and biomaterials. The precise nano-scale positioning and well-defined gauge volume of this experimental technique make it eminently suitable for spatially resolved analysis, that is, residual stress profiling and mapping. Following a summary of micro-stress evaluation approaches, we focus our attention on focused ion beam-digital image correlation methods and assess the application of micro-scale ring-core methods for spatially resolved residual stress profiling. The sequential ring-core milling focused ion beam-digital image correlation method allows micro-to macro-scale mapping at the step of 10-1000 mm, while the parallel focused ion beam-digital image correlation approach exploits simultaneous milling operation to quantify stress profiles at the micron scale (1-10 mm). Cross-validation against X-ray diffraction results confirms that these approaches represent accurate, reliable and effective residual stress mapping methods.
机译:残余应力梯度的量化可以大大提高理解微观结构,机械状态,失效模式和结构完整性之间的复杂相互作用的能力。 X射线衍射,电子衍射或拉曼光谱等高度集中的局部探针非破坏性技术在确定残余应力相对于许多结构材料的参考状态的相对变化的空间变化方面,已建立了良好的记录。但是,根据绝对应力值来解释这些测量结果需要一个无应变的样本,该样本通常由于化学,微观结构或加工路线的影响而难以获得。随着聚焦离子束仪器的可用性不断提高,已开发出一种新方法,称为微尺度环芯聚焦离子束数字图像相关技术。该技术正在成为量化绝对面内残余应力的主要工具。它可以应用于多种材料:结晶和非晶态金属合金以及陶瓷,聚合物,复合材料和生物材料。这种实验技术的精确的纳米级定位和定义明确的标称体积使其特别适合于空间分辨分析,即残余应力轮廓分析和绘图。在总结了微应力评估方法之后,我们将注意力集中在聚焦离子束-数字图像相关方法上,并评估了微尺度环核方法在空间分辨残余应力轮廓分析中的应用。顺序环芯铣削聚焦离子束-数字图像相关方法可以在10-1000 mm的步长上进行微观到宏观的映射,而平行聚焦离子束数字图像相关方法则利用同时铣削操作来量化应力分布在微米级(1-10毫米)。针对X射线衍射结果的交叉验证证实了这些方法代表了准确,可靠和有效的残余应力映射方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号