...
首页> 外文期刊>Journal of Spacecraft and Rockets >Compressible Wall-Injection Flows in Laminar, Transitional, and Turbulent Regimes: Numerical Prediction
【24h】

Compressible Wall-Injection Flows in Laminar, Transitional, and Turbulent Regimes: Numerical Prediction

机译:层流,过渡和湍流状态下的可压缩壁注入流:数值预测

获取原文
获取原文并翻译 | 示例
           

摘要

Numerical simulations of compressible rocket flows are conducted in laminar, transitional, and turbulent regimes. The laminar simulation is carried out on a planar rocket flow without nozzle using the unsteady two-dimensional Navier-Stokes system. The transitional and turbulent flows are performed in three-dimensional on an extended rocket geometry with a divergent outlet using compressible large eddy simulation (LES) models. In both cases, the compressibility effect plays an important role. In the laminar case, pressure oscillation is forced at the outflow boundary. The time-averaged part of the solution is compared with the inviscid theory of compressible rocket flow of Balakrishnan et al. (Balakrishnan, G., Linan, A., and Williams F. A., "Compressibility Effects in Thin Channels with Injection," A/AA Journal, Vol. 29, No. 12, 1991, pp. 2149-2154) and the oscillatory part with the acoustic layer model of Majdalani and Van Moorhem (Majdalani, J., and Van Moorhem, W. K., "Improved Time-Dependent Flowfield Solution for Solid Rocket Motors," A/AA Journal, Vol. 36, No. 2, 1998, pp. 241-248). The mean flow from the present numerical result is in better agreement with the compressible theory than the conventional Taylor's profiles (Taylor, G. I., "Fluid Flow in Regions Bounded by Porous Surfaces," Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences, Vol. 234,1956, pp. 456-475), as expected. The oscillatory part of the flow agrees well in the first quarter of the axial extent, near the head end. Farther downstream, the discrepancies develop rapidly between the numerical result and the acoustic-layer model. Possible causes of the difference are the effect of compressibility, which alters the local speed of sound, hence, acoustic properties, and the interference of hydrodynamic instabilities. In the transition and turbulent regimes, the dynamic LES model is applied on different resolutions. The measurements data of Traineau et al. (Traineau, J. C., Hervat, P., and Kuentzmann, P., "Cold Flow Simulation of a Two Dimensional Nozzleless Solid Rocket Motor," AIAA Paper 86-1447, June 1986) are employed for comparison purposes. The refinement study by comparison with the measurement data suggests the importance of resolving the laminar and transition region for a reliable application of LES in transitional flows. With the consideration of this aspect, LES with efficient grid size can produce resonable accuracy. Forcing hydrodynamic instabilities and a more realistic injection fluctuations model are recommended.
机译:可压缩火箭流的数值模拟是在层流,过渡和湍流状态下进行的。使用不稳定的二维Navier-Stokes系统在没有喷嘴的平面火箭流上进行层流仿真。使用可压缩的大涡流模拟(LES)模型,在具有发散出口的扩展火箭几何上,以三维方式执行了过渡流和湍流。在这两种情况下,可压缩性都起着重要作用。在层流情况下,压力振荡在流出边界处被强制。该解的时间平均部分与Balakrishnan等人的可压缩火箭流的无粘性理论进行了比较。 (Balakrishnan,G.,Linan,A.和Williams FA,“注射细通道中的可压缩性效应”,A / AA Journal,第29卷,第12期,1991年,第2149-2154页)和振荡部分与Majdalani和Van Moorhem的声学层模型(Majdalani,J.和Van Moorhem,WK,“改进的固体火箭发动机的时变流场解决方案”,A / AA杂志,第36卷,第2期,1998年, pp.241-248)。与传统的泰勒剖面(泰勒,GI,“流体在多孔表面所包围的区域中的流动”,伦敦皇家学会会议录,系列A:数学和物理科学,第234卷,1956年,第456-475页)。流量的振荡部分在轴向范围的第一个四分之一处(靠近头端)非常吻合。在更远的下游,数值结果与声层模型之间的差异迅速发展。造成这种差异的可能原因是可压缩性的影响,它改变了声音的局部速度,从而改变了声学特性,并干扰了流体动力学的不稳定性。在过渡和湍流状态下,动态LES模型适用于不同的分辨率。 Traineau等人的测量数据。 (Traineau,J.C.,Hervat,P。和Kuentzmann,P。,“二维无喷嘴固体火箭发动机的冷流模拟,” AIAA论文86-1447,1986年6月)用于比较目的。通过与测量数据进行比较的精炼研究表明,解析层流和过渡区域对于LES在过渡流中的可靠应用至关重要。考虑到这一方面,具有有效网格尺寸的LES可以产生合理的精度。建议强迫流体动力不稳定性和更实际的注入波动模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号