首页> 外文期刊>Journal of signal processing systems for signal, image, and video technology >FPGA Implementation of Cross Virtual Concatenation Transmitter/ Receiver for Data Transmission over Next Generation SDH Systems
【24h】

FPGA Implementation of Cross Virtual Concatenation Transmitter/ Receiver for Data Transmission over Next Generation SDH Systems

机译:交叉虚拟级联发送器/接收器的FPGA实现,用于通过下一代SDH系统进行数据传输

获取原文
获取原文并翻译 | 示例
           

摘要

Cross Virtual Concatenation is the new technique proposed for bandwidth efficient transmission of data over SDH networks. SDH networks came into existence for reliable voice transmission. As the demand of data traffic grew in wide area networks, new technologies were developed and standardized for data transmission over SDH networks. The technologies used namely, GFP (generic framing procedure), VCAT (virtual concatenation) and LCAS (link capacity adjustment scheme) enable network operator to provide integrated voice and data services over their legacy SDH infrastructure. Data packets are encapsulated using framing protocols GFP. VCAT is a process of distributing the GFP framed data payload in number of virtual channels of same capacity forming a Virtually Concatenated Group (VCG). LCAS is used for dynamic bandwidth allocation. LCAS enhances the VCAT scheme with hitless in service addition and removal of VC's 0to/from the VCG.VCAT combines homogeneous virtual channels together which in some cases limits the performance of VCAT. This paper describes the implementation of new concatenation technology named cross virtual concatenation (CVC), which combines heterogeneous VC's together to utilize the SDH bandwidth more efficient- ly. CVC implementation requires only end node equipments to be upgraded as VCG members travel through the link similar to the conventional VCAT. This paper proposes FPGA implementation of transmitter and receiver circuits for 100 Mbps Ethernet data transmission over next Generation SDH systems using CVC, where two types of VC's namely VC-3 and VC-12 are used for data transmission. Total Transmission delay is calculated as 125 μs. There is no complexity added at the receiver side due to this delay. The receiver is designed for 32 ms differential delay compensation which can be increased up to maximum 256 ms by increasing the buffer size at the receiver.
机译:交叉虚拟级联是针对SDH网络上的带宽高效传输数据而提出的一项新技术。 SDH网络的出现是为了可靠的语音传输。随着广域网中数据流量需求的增长,开发了新技术并标准化了SDH网络上的数据传输。所使用的技术,即GFP(通用成帧程序),VCAT(虚拟级联)和LCAS(链路容量调整方案)使网络运营商能够在其原有的SDH基础架构上提供集成的语音和数据服务。数据包使用成帧协议GFP封装。 VCAT是在组成虚拟连接组(VCG)的相同容量的多个虚拟通道中分配GFP帧数据有效载荷的过程。 LCAS用于动态带宽分配。 LCAS增强了VCAT方案,在服务添加和从VCG删除VC的0方面毫不费力.VCAT将同类虚拟通道组合在一起,在某些情况下限制了VCAT的性能。本文介绍了一种称为交叉虚拟级联(CVC)的新级联技术的实现,该技术将异构VC组合在一起,可以更有效地利用SDH带宽。 CVC的实现只需要升级端节点设备即可,因为VCG成员通过链接的方式类似于常规VCAT。本文提出了使用CVC在下一代SDH系统上进行100 Mbps以太网数据传输的发送器和接收器电路的FPGA实现,其中两种类型的VC即VC-3和VC-12用于数据传输。计算的总传输延迟为125μs。由于该延迟,在接收机侧没有增加复杂度。接收器设计用于32 ms差分延迟补偿,可以通过增加接收器的缓冲区大小将其增加到最大256 ms。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号