首页> 外文期刊>Journal of Ship Research >An Experimental Investigation of Ride Control Algorithms for High-Speed Catamarans Part 2: Mitigation of Wave Impact Loads
【24h】

An Experimental Investigation of Ride Control Algorithms for High-Speed Catamarans Part 2: Mitigation of Wave Impact Loads

机译:高速双体船乘船控制算法的实验研究:第2部分:减轻波浪冲击载荷

获取原文
获取原文并翻译 | 示例
       

摘要

High-speed craft frequently experience large wave impact loads due to their large motions and accelerations. One solution to reduce the severity of motion and impact loadings is the installation of ride control systems. Part 1 of this study investigates the influence of control algorithms on the motions of a 112-m highspeed catamaran using a 2.5-m model fitted with a ride control system. The present study extends this to investigate the influence of control algorithms on the loads and internal forces acting on a hydroelastic segmented catamaran model. As in Part 1, the model active control system consisted of a center bow T-Foil and two stern tabs. Six motion control feedback algorithms were used to activate the model-scale ride control system and surfaces in a closed loop system: local motion, heave, and pitch control, each in a linear and nonlinear application. The loads were further determined with a passive ride control system and without control surfaces fitted for direct comparison. The model was segmented into seven parts, connected by flexible links that replicate the first two natural frequencies and mode shapes of the 112-m INCAT vessel, enabling isolation and measurement of a center bow force and bending moments at two cross sections along the demi-hulls. The model was tested in regular head seas at different wave heights and frequencies. From these tests, it was found that the pitch control mode was most effective and in 60-mm model-scale waves it significantly reduced the peak slam force by 90% and the average slam induced bending moment by 75% when compared with a bare hull without ride controls fitted. This clearly demonstrates the effectiveness of a ride control system in reducing wave impact loads acting on high-speed catamaran vessels.
机译:高速航行器由于其较大的运动和加速度而经常经受较大的波浪冲击载荷。降低运动和冲击负荷的严重性的一种解决方案是安装行驶控制系统。本研究的第1部分使用装有行驶控制系统的2.5 m模型,研究了控制算法对112 m高速双体船运动的影响。本研究将其扩展为研究控制算法对作用于水弹性分段双体船模型的载荷和内力的影响。与第1部分一样,模型主动控制系统包括一个中央弓形T型箔和两个船尾翼片。六个运动控制反馈算法用于激活模型比例的行驶控制系统和闭环系统中的曲面:局部运动,升沉和俯仰控制,分别在线性和非线性应用中使用。负载是通过被动行驶控制系统确定的,没有安装用于直接比较的控制表面。该模型分为七个部分,通过灵活的链接进行连接,这些链接复制了112米INCAT船的前两个固有频率和振型,从而可以隔离和测量沿半圆形的两个横截面的中心弯曲力和弯矩。船体。该模型在正常的海浪中以不同的波高和频率进行了测试。从这些测试中,我们发现俯仰控制模式是最有效的,并且在60毫米模型规模的波浪中,与裸机壳相比,它可以将峰值猛击力降低90%,将平均猛击产生的弯矩降低75%。没有安装行驶控制。这清楚地证明了行驶控制系统在减少作用于高速双体船上的波浪冲击载荷方面的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号